Cordova Lauren T, Lu Jing, Cipolla Robert M, Sandoval Nicholas R, Long Christopher P, Antoniewicz Maciek R
Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
Metab Eng. 2016 Sep;37:63-71. doi: 10.1016/j.ymben.2016.05.001. Epub 2016 May 7.
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.
我们对嗜热栖热菌进行了进化改造,使其能够在高温下高效共利用葡萄糖和木糖(木质纤维素生物质中两种含量最丰富的糖类),且不存在碳分解代谢物阻遏现象。为构建该菌株,首先让嗜热栖热菌HB8在葡萄糖上进化以改善其生长特性,随后在木糖上进行进化。对所得菌株嗜热栖热菌LC113进行了生长研究、全基因组测序以及以[1,6-(13)C]葡萄糖、[5-(13)C]木糖和[1,6-(13)C]葡萄糖+[5-(13)C]木糖作为同位素示踪剂的(13)C-代谢通量分析((13)C-MFA)。与起始菌株相比,进化后的菌株生长速率提高(约2倍)、生物量产量增加、对高达90°C的高温耐受性增强,并且获得了在基本培养基中利用木糖生长的能力。在81°C的最佳生长温度下,葡萄糖和木糖的最大生长速率分别为0.44和0.46 h(-1)。在含有葡萄糖和木糖的培养基中,该菌株能够高效共利用这两种糖类。(13)C-MFA结果为嗜热栖热菌LC113实现葡萄糖和木糖高效共利用的代谢机制提供了深入见解。具体而言,(13)C-MFA表明,代谢上半部分的代谢通量可灵活适应糖类的可利用性,而代谢下半部分的通量则保持相对恒定。全基因组序列分析揭示了两个有助于解释进化后菌株生理特性的重大结构变化:一个包含许多糖转运蛋白的染色体区域发生了重复,以及pVV8质粒上一个包含木糖异构酶和木酮糖激酶基因(木糖分解代谢的前两种酶)的区域扩增了5倍。综合来看,(13)C-MFA和基因组序列分析为进化后菌株的生理特性提供了互补的见解。