Nijland Jeroen G, Shin Hyun Yong, de Jong René M, de Waal Paul P, Klaassen Paul, Driessen Arnold Jm
Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands.
DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands.
Biotechnol Biofuels. 2014 Nov 29;7(1):168. doi: 10.1186/s13068-014-0168-9. eCollection 2014.
Engineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose can be transported and metabolized.
We have used an evolutionary engineering approach that depends on a quadruple hexokinase deletion xylose-fermenting S. cerevisiae strain to select for growth on D-xylose in the presence of high D-glucose concentrations. This resulted in D-glucose-tolerant growth of the yeast of D-xylose. This could be attributed to mutations at N367 in the endogenous chimeric Hxt36 transporter, causing a defect in D-glucose transport while still allowing specific uptake of D-xylose. The Hxt36-N367A variant transports D-xylose with a high rate and improved affinity, enabling the efficient co-consumption of D-glucose and D-xylose.
Engineering of yeast endogenous hexose transporters provides an effective strategy to construct glucose-insensitive xylose transporters that are well integrated in the carbon metabolism regulatory network, and that can be used for efficient lignocellulosic bioethanol production.
对酿酒酵母进行工程改造以使其同时利用己糖和戊糖对于具有成本效益的纤维素生物乙醇生产至关重要。这种酵母缺乏特定的戊糖转运蛋白,并且依赖内源性己糖转运蛋白进行低亲和力的戊糖摄取。因此,工程化的木糖发酵酵母菌株在D-木糖能够被转运和代谢之前首先利用D-葡萄糖。
我们采用了一种进化工程方法,该方法依赖于一种缺失四倍己糖激酶的木糖发酵酿酒酵母菌株,以在高D-葡萄糖浓度存在的情况下选择在D-木糖上生长。这导致酵母对D-木糖具有耐D-葡萄糖生长能力。这可归因于内源性嵌合Hxt36转运蛋白中N367处的突变,导致D-葡萄糖转运缺陷,同时仍允许D-木糖的特异性摄取。Hxt36-N367A变体以高速率和更高的亲和力转运D-木糖,从而实现D-葡萄糖和D-木糖的有效共消耗。
对酵母内源性己糖转运蛋白进行工程改造提供了一种有效的策略,以构建对葡萄糖不敏感的木糖转运蛋白,这些转运蛋白能很好地整合到碳代谢调控网络中,并可用于高效的木质纤维素生物乙醇生产。