Suppr超能文献

附着于单个生物分子的单个氮空位纳米金刚石的电子顺磁共振

Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.

作者信息

Teeling-Smith Richelle M, Jung Young Woo, Scozzaro Nicolas, Cardellino Jeremy, Rampersaud Isaac, North Justin A, Šimon Marek, Bhallamudi Vidya P, Rampersaud Arfaan, Johnston-Halperin Ezekiel, Poirier Michael G, Hammel P Chris

机构信息

Department of Physics, The Ohio State University, Columbus, Ohio.

Samsung Electronics, San #24 Nongseo-Dong, Giheung-Gu, Yongin-City, Gyonggi-Do, Korea.

出版信息

Biophys J. 2016 May 10;110(9):2044-52. doi: 10.1016/j.bpj.2016.03.022.

Abstract

Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.

摘要

电子顺磁共振(EPR)是一种成熟且强大的用于研究原子尺度生物分子结构和动力学的方法,通常需要超过10¹²个标记的生物分子。单分子测量能更好地洞察在整体测量中可能被掩盖的异质性行为,对于阐明生物分子功能背后的分子机制往往至关重要。在此,我们报告了对单个标记生物分子的EPR测量。我们用一个含有氮空位中心的单个纳米金刚石选择性地标记单个双链DNA分子,并通过光学检测纳米金刚石探针中氮空位自旋的顺磁共振。光谱分析表明,纳米金刚石探针具有完全的旋转自由度,并且与横向自旋弛豫时间相比,纳米金刚石探针重新定向的特征时间尺度较慢。这种对单个纳米金刚石标记DNA的EPR光谱学演示为复杂生物分子系统的单分子磁共振研究发展奠定了基础。

相似文献

1
Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.
Biophys J. 2016 May 10;110(9):2044-52. doi: 10.1016/j.bpj.2016.03.022.
2
High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.
Cell Biochem Biophys. 2017 Jun;75(2):151-157. doi: 10.1007/s12013-016-0739-4. Epub 2016 Jun 21.
4
Nanodiamond molecular imaging with enhanced contrast and expanded field of view.
J Biomed Opt. 2014 Jan;19(1):011015. doi: 10.1117/1.JBO.19.1.011015.
5
Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers.
ACS Nano. 2019 Jun 25;13(6):6461-6468. doi: 10.1021/acsnano.8b09383. Epub 2019 May 29.
6
Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3938-43. doi: 10.1073/pnas.1504451113. Epub 2016 Mar 24.
7
Nanodiamond-Based Optical-Fiber Quantum Probe for Magnetic Field and Biological Sensing.
ACS Sens. 2022 Dec 23;7(12):3660-3670. doi: 10.1021/acssensors.2c00670. Epub 2022 Dec 1.
8
Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
ACS Nano. 2013 Dec 23;7(12):10912-9. doi: 10.1021/nn404421b. Epub 2013 Nov 23.
9
Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe.
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10894-8. doi: 10.1073/pnas.1300640110. Epub 2013 Jun 17.
10
Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.
ACS Nano. 2018 May 22;12(5):4678-4686. doi: 10.1021/acsnano.8b01265. Epub 2018 Apr 23.

引用本文的文献

本文引用的文献

1
Protein imaging. Single-protein spin resonance spectroscopy under ambient conditions.
Science. 2015 Mar 6;347(6226):1135-8. doi: 10.1126/science.aaa2253.
2
Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer.
Phys Rev Lett. 2014 Nov 21;113(21):217204. doi: 10.1103/PhysRevLett.113.217204. Epub 2014 Nov 20.
3
Engineered micro- and nanoscale diamonds as mobile probes for high-resolution sensing in fluid.
Nano Lett. 2014 Sep 10;14(9):4959-64. doi: 10.1021/nl501208s. Epub 2014 Aug 4.
4
Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13493-7. doi: 10.1073/pnas.1211311109. Epub 2012 Aug 6.
5
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
6
Histone fold modifications control nucleosome unwrapping and disassembly.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12711-6. doi: 10.1073/pnas.1106264108. Epub 2011 Jul 18.
7
Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells.
Nat Nanotechnol. 2011 May 8;6(6):358-63. doi: 10.1038/nnano.2011.64.
8
Fluorescence and spin properties of defects in single digit nanodiamonds.
ACS Nano. 2009 Jul 28;3(7):1959-65. doi: 10.1021/nn9003617. Epub 2009 Jul 10.
9
Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting.
Angew Chem Int Ed Engl. 2011 Feb 7;50(6):1388-92. doi: 10.1002/anie.201006310. Epub 2011 Jan 18.
10
Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds.
Nat Nanotechnol. 2010 May;5(5):345-9. doi: 10.1038/nnano.2010.56. Epub 2010 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验