Suppr超能文献

纳米金刚石分子成像具有增强的对比度和扩展的视野。

Nanodiamond molecular imaging with enhanced contrast and expanded field of view.

机构信息

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, 205 Cory Hall, Berkeley, California 94720-1770, USA.

出版信息

J Biomed Opt. 2014 Jan;19(1):011015. doi: 10.1117/1.JBO.19.1.011015.

Abstract

Nanodiamond imaging is a new molecular imaging modality that takes advantage of nitrogen-vacancy (NV) centers in nanodiamonds to image a distribution of nanodiamonds with high sensitivity and high spatial resolution. Since nanodiamonds are nontoxic and are easily conjugated to biomolecules, nanodiamond imaging can potentially elicit physiological information from within a living organism. The position of the nanodiamonds is measured using optically detected electron spin resonance of the NVs. In a previous paper, we described a proof-of-principle nanodiamond imaging system with the ability to image in two dimensions over a 1×1  cm field of view and demonstrated imaging within scattering tissue. Here, we describe a second-generation nanodiamond imaging system with a field of view of 30×200  mm, and with three-dimensional imaging potential. The new system has a comparable spatial resolution of 1.2 mm FWHM and a sensitivity (in terms of the concentration of carbon atoms in a  mm3  voxel) of 1.6  mM mm3 Hz-1/2, a 3-dB improvement relative to the old system. We show that imaging at 2.872 GHz versus imaging at 2.869 GHz offers a 1.73× improvement in sensitivity with only a 20% decrease in resolution and motivate this by describing the observed lineshape starting from the NV spin Hamiltonian.

摘要

纳米金刚石成像是一种新的分子成像模式,利用纳米金刚石中的氮空位(NV)中心来高灵敏度和高空间分辨率地成像纳米金刚石的分布。由于纳米金刚石是无毒的,并且易于与生物分子结合,因此纳米金刚石成像有可能从活体内获取生理信息。纳米金刚石的位置通过 NV 的光检测电子自旋共振来测量。在之前的一篇论文中,我们描述了一个具有二维成像能力的原理验证纳米金刚石成像系统,能够在 1×1cm 的视场中成像,并在散射组织内进行了成像演示。在这里,我们描述了一个第二代纳米金刚石成像系统,具有 30×200mm 的视场,具有三维成像潜力。新系统具有可比的空间分辨率为 1.2mm FWHM 和灵敏度(以每立方毫米体素中的碳原子浓度表示)为 1.6mM·mm3·Hz-1/2,与旧系统相比提高了 3dB。我们表明,在 2.872GHz 进行成像相比于在 2.869GHz 进行成像灵敏度提高了 1.73 倍,而分辨率仅下降了 20%,并通过从 NV 自旋哈密顿量描述观察到的线形状来解释这种现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验