Liu Zengzhen, Bun Philippe, Audugé Nicolas, Coppey-Moisan Maïté, Borghi Nicolas
Institut Jacques Monod, Unité Mixe de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, 304B Bât. Buffon, 15 rue Hélène Brion, Paris 75013, France.
Integr Biol (Camb). 2016 Jun 13;8(6):693-703. doi: 10.1039/c5ib00307e. Epub 2016 May 11.
Rigidity sensing is a critical determinant of cell fate and behavior but its molecular mechanisms are poorly understood. Focal adhesions (FAs) are complexes that anchor cells to the matrix. Among their components, vinculin undergoes an auto-inhibitory head-tail interaction that regulates the recruitment of, and interactions with its partners in a force-dependent manner. It is unknown, however, whether this mechanism is involved in substrate rigidity sensing. Here, we use a range of quantitative fluorescence microscopies on live human Mesenchymal Stem Cells to address this question. We identify two distinct rigidity-sensing molecular modules in FAs, one of which involves vinculin and talin, is regulated by vinculin head-tail interaction, and targets cell morphology. Vinculin and talin are recruited independently in a rigidity-dependent manner to FAs where they directly interact in a rigidity-independent stoichiometry at a site proximal to talin head. Vinculin head-tail interaction is required on soft substrates to destabilize vinculin and talin in FAs, and to allow hMSCs branching. Another module involves paxillin and FAK, which soft substrates also destabilize, but independently of vinculin head-tail interaction. This multi-modularity may be key to allow a versatile response to complex biomechanical cues.
硬度感知是细胞命运和行为的关键决定因素,但其分子机制尚不清楚。粘着斑(FAs)是将细胞锚定到基质上的复合物。在其组成成分中,纽蛋白会发生一种自抑制性的头尾相互作用,这种相互作用以力依赖的方式调节其与伙伴的募集及相互作用。然而,尚不清楚这种机制是否参与底物硬度感知。在这里,我们对活的人骨髓间充质干细胞使用了一系列定量荧光显微镜技术来解决这个问题。我们在粘着斑中鉴定出两个不同的硬度感知分子模块,其中一个涉及纽蛋白和踝蛋白,受纽蛋白头尾相互作用调节,并靶向细胞形态。纽蛋白和踝蛋白以硬度依赖的方式独立募集到粘着斑,在那里它们以与硬度无关的化学计量比在踝蛋白头部近端的位点直接相互作用。在软基质上,需要纽蛋白头尾相互作用来破坏粘着斑中的纽蛋白和踝蛋白的稳定性,并使人间充质干细胞分支。另一个模块涉及桩蛋白和粘着斑激酶,软基质也会破坏它们的稳定性,但与纽蛋白头尾相互作用无关。这种多模块性可能是对复杂生物力学信号产生通用反应的关键。