Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d'Heres, France.
Institut Pasteur, Department of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75015 Paris, France.
Sci Adv. 2020 Jan 3;6(1):eaau5670. doi: 10.1126/sciadv.aau5670. eCollection 2020 Jan.
Directional cell motility relies on the ability of single cells to establish a front-rear polarity and can occur in the absence of external cues. The initiation of migration has often been attributed to the spontaneous polarization of cytoskeleton components, while the spatiotemporal evolution of cell-substrate interaction forces has yet to be resolved. Here, we establish a one-dimensional microfabricated migration assay that mimics the complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters of NIH-3T3 fibroblasts and RPE1 epithelial cells reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to trigger cell motility in 1D in the absence of pre-established polarity. A theoretical model validates the crucial role of adhesion dynamics, proposing that front-rear polarity can emerge independently of a complex self-polarizing system.
定向细胞迁移依赖于单细胞建立前后极性的能力,并且可以在没有外部线索的情况下发生。迁移的开始通常归因于细胞骨架成分的自发极化,而细胞-基底相互作用力的时空演化尚未得到解决。在这里,我们建立了一个一维微制造迁移测定,模拟复杂的体内纤维环境,同时兼容高分辨率力测量、定量显微镜和光遗传学。对 NIH-3T3 成纤维细胞和 RPE1 上皮细胞的形态和力学参数的定量分析揭示了一种通用的粘滑行为,该行为由细胞一侧的收缩依赖性随机附着接触脱附引发,足以在没有预先建立的极性的情况下在 1D 中触发细胞迁移。一个理论模型验证了粘附动力学的关键作用,提出了前后极性可以独立于复杂的自极化系统出现。