Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.
Nature. 2015 May 28;521(7553):498-502. doi: 10.1038/nature14456.
Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.
极端紫外(EUV)高次谐波辐射源自激光驱动的原子、分子或等离子体,为强大的阿秒光谱技术提供了基础,并深入了解物质的基本结构和动态特性。这些光谱技术在凝聚态物质中研究强场电子动力学的进步需要在块状固体中产生和操纵 EUV 辐射,但这一能力仍然超出了光学科学的范围。最近的实验和理论预测通过展示在体半导体中深紫外辐射的产生和光控,为固体中的强场物理铺平了道路,这是由飞秒中红外场或太赫兹场的相干上转换驱动的,可将多倍频程光谱转换为中红外和光学频率。在这里,我们证明了暴露于强、几周期到亚周期脉冲的 SiO2 薄膜会产生扩展到约 40 电子伏特的宽带相干 EUV 辐射。我们的研究表明,发射的 EUV 辐射与在 SiO2 的最低导带中感应的多太赫兹频率的带内电流有关。为了证明高次谐波光谱在固体中的适用性,我们利用 EUV 光谱来获取导带的能带色散轮廓的精细细节,这些细节是在宽带隙介电体的光发射光谱中无法获得的。此外,我们使用 EUV 光谱来追踪由合成光瞬态诱导的带内电子运动的阿秒控制。我们的工作将凝聚态物质中的光波电子学推进到多太赫兹频率及其阿秒控制的领域,并标志着固态 EUV 光子学的出现。