Suppr超能文献

“大规模”脑数据集:用于结构成像验证与评估标准化的多次采集

"MASSIVE" brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation.

作者信息

Froeling Martijn, Tax Chantal M W, Vos Sjoerd B, Luijten Peter R, Leemans Alexander

机构信息

Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.

Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands.

出版信息

Magn Reson Med. 2017 May;77(5):1797-1809. doi: 10.1002/mrm.26259. Epub 2016 May 13.

Abstract

PURPOSE

In this work, we present the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is intended to facilitate diffusion MRI (dMRI) modeling and methodology development.

METHODS

MRI data of one healthy subject (female, 25 years) were acquired on a clinical 3 Tesla system (Philips Achieva) with an eight-channel head coil. In total, the subject was scanned on 18 different occasions with a total acquisition time of 22.5 h. The dMRI data were acquired with an isotropic resolution of 2.5 mm and distributed over five shells with b-values up to 4000 s/mm and two Cartesian grids with b-values up to 9000 s/mm .

RESULTS

The final dataset consists of 8000 dMRI volumes, corresponding B field maps and noise maps for subsets of the dMRI scans, and ten three-dimensional FLAIR, T -, and T -weighted scans. The average signal-to-noise-ratio of the non-diffusion-weighted images was roughly 35.

CONCLUSION

This unique set of in vivo MRI data will provide a robust framework to evaluate novel diffusion processing techniques and to reliably compare different approaches for diffusion modeling. The MASSIVE dataset is made publically available (both unprocessed and processed) on www.massive-data.org. Magn Reson Med 77:1797-1809, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

在本研究中,我们展示了一名健康受试者的MASSIVE(用于结构成像验证和评估标准化的多次采集)脑数据集,旨在促进扩散磁共振成像(dMRI)建模和方法学发展。

方法

在一台配备八通道头部线圈的临床3特斯拉系统(飞利浦Achieva)上采集了一名健康受试者(25岁女性)的磁共振成像(MRI)数据。该受试者总共接受了18次不同扫描,总采集时间为22.5小时。dMRI数据以2.5毫米的各向同性分辨率采集,分布在五个b值高达4000 s/mm²的采集中,以及两个b值高达9000 s/mm²的笛卡尔网格采集中。

结果

最终数据集包括8000个dMRI容积、dMRI扫描子集对应的B场图和噪声图,以及十次三维液体衰减反转恢复(FLAIR)、T1加权和T2加权扫描。非扩散加权图像的平均信噪比约为35。

结论

这一独特的体内MRI数据集将提供一个强大的框架,用于评估新型扩散处理技术,并可靠地比较不同的扩散建模方法。MASSIVE数据集在www.massive-data.org上公开提供(包括未处理和已处理的数据)。《磁共振医学》77:1797 - 1809, 2017。© 2016国际磁共振医学学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验