Suppr超能文献

无性数字生物基因组大小的演变

Evolution of Genome Size in Asexual Digital Organisms.

作者信息

Gupta Aditi, LaBar Thomas, Miyagi Miriam, Adami Christoph

机构信息

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Sci Rep. 2016 May 16;6:25786. doi: 10.1038/srep25786.

Abstract

Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution. Specifically, it is not clear how the primordial mutational processes of base substitutions, insertions, and deletions influence genome size evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we find that mutation rate is inversely correlated with genome size in asexual populations. We show that at low point mutation rate, insertions are significantly more beneficial than deletions, driving genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress their genetic information. Our analyses suggest that the inverse relationship between mutation rate and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the mutational load.

摘要

基因组大小已经进化到有很大差异,从类病毒的250个碱基到某些变形虫的6700亿个碱基。基因组大小的这种显著差异是突变率和种群大小等各种进化因素之间复杂相互作用的结果。虽然比较基因组学已经揭示了其中一些进化因素是如何影响基因组大小的,但我们仍然不明白是什么驱动了基因组大小的进化。具体来说,尚不清楚碱基替换、插入和缺失这些原始突变过程如何影响无性生物的基因组大小进化。在这里,我们通过实时跟踪基因组编辑及其适应性效应,利用数字进化来研究基因组大小的进化。与实证数据一致,我们发现在无性种群中,突变率与基因组大小呈负相关。我们表明,在低点突变率下,插入比缺失明显更有益,从而推动基因组扩张和表型复杂性的获得。相反,在高突变率下经历的高突变负荷会抑制基因组生长,迫使基因组压缩其遗传信息。我们的分析表明,突变率与基因组大小之间的负相关关系是进化表型创新与限制突变负荷之间权衡的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16e/4867773/3071e2610f0d/41598_2016_BFsrep25786_Fig1_HTML.jpg

相似文献

1
Evolution of Genome Size in Asexual Digital Organisms.
Sci Rep. 2016 May 16;6:25786. doi: 10.1038/srep25786.
2
Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species.
Methods Mol Biol. 2019;1910:331-369. doi: 10.1007/978-1-4939-9074-0_11.
3
Tempo and mode of genome evolution in a 50,000-generation experiment.
Nature. 2016 Aug 11;536(7615):165-70. doi: 10.1038/nature18959. Epub 2016 Aug 1.
4
Evolution of Mutation Rates in Rapidly Adapting Asexual Populations.
Genetics. 2016 Nov;204(3):1249-1266. doi: 10.1534/genetics.116.193565. Epub 2016 Sep 19.
5
Characterization of evolutionary rates and constraints in three Mammalian genomes.
Genome Res. 2004 Apr;14(4):539-48. doi: 10.1101/gr.2034704.
7
Mutation Rate Evolution in Partially Selfing and Partially Asexual Organisms.
Genetics. 2017 Dec;207(4):1561-1575. doi: 10.1534/genetics.117.300346. Epub 2017 Oct 2.
8
Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
Theory Biosci. 2009 Nov;128(4):249-85. doi: 10.1007/s12064-009-0077-9. Epub 2009 Nov 10.
9
Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates.
PLoS Biol. 2012 Jan;10(1):e1001241. doi: 10.1371/journal.pbio.1001241. Epub 2012 Jan 17.
10
An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.
Genetics. 2016 Jun;203(2):923-36. doi: 10.1534/genetics.116.186916. Epub 2016 Apr 20.

引用本文的文献

3
avidaR: an R library to perform complex queries on an ontology-based database of digital organisms.
PeerJ Comput Sci. 2023 Sep 19;9:e1568. doi: 10.7717/peerj-cs.1568. eCollection 2023.
4
Ontology for the Avida digital evolution platform.
Sci Data. 2023 Sep 9;10(1):608. doi: 10.1038/s41597-023-02514-3.
6
Thermosipho spp. Immune System Differences Affect Variation in Genome Size and Geographical Distributions.
Genome Biol Evol. 2018 Nov 1;10(11):2853-2866. doi: 10.1093/gbe/evy202.
7
Origin of life in a digital microcosm.
Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109). doi: 10.1098/rsta.2016.0350.
8
Evolutionary dynamics of viral escape under antibodies stress: A biophysical model.
Protein Sci. 2016 Jul;25(7):1332-40. doi: 10.1002/pro.2915. Epub 2016 Mar 24.

本文引用的文献

1
Differentially-Expressed Pseudogenes in HIV-1 Infection.
Viruses. 2015 Sep 29;7(10):5191-205. doi: 10.3390/v7102869.
2
Coevolution drives the emergence of complex traits and promotes evolvability.
PLoS Biol. 2014 Dec 16;12(12):e1002023. doi: 10.1371/journal.pbio.1002023. eCollection 2014 Dec.
3
The roles of standing genetic variation and evolutionary history in determining the evolvability of anti-predator strategies.
PLoS One. 2014 Jun 23;9(6):e100163. doi: 10.1371/journal.pone.0100163. eCollection 2014.
4
The case for junk DNA.
PLoS Genet. 2014 May 8;10(5):e1004351. doi: 10.1371/journal.pgen.1004351. eCollection 2014 May.
5
In silico experimental evolution: a tool to test evolutionary scenarios.
BMC Bioinformatics. 2013;14 Suppl 15(Suppl 15):S11. doi: 10.1186/1471-2105-14-S15-S11. Epub 2013 Oct 15.
7
Experimental evolution of pseudogenization and gene loss in a plant RNA virus.
Mol Biol Evol. 2014 Jan;31(1):121-34. doi: 10.1093/molbev/mst175. Epub 2013 Oct 8.
8
lincRNAs: genomics, evolution, and mechanisms.
Cell. 2013 Jul 3;154(1):26-46. doi: 10.1016/j.cell.2013.06.020.
9
Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs.
PLoS Genet. 2013 Jun;9(6):e1003569. doi: 10.1371/journal.pgen.1003569. Epub 2013 Jun 20.
10
The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites.
Proc Biol Sci. 2013 May 1;280(1761):20130647. doi: 10.1098/rspb.2013.0647. Print 2013 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验