Belair David G, Schwartz Michael P, Knudsen Thomas, Murphy William L
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
Acta Biomater. 2016 Jul 15;39:12-24. doi: 10.1016/j.actbio.2016.05.020. Epub 2016 May 13.
Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events during angiogenesis in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by undefined substrates and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). We rapidly encapsulated iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres using thiol-ene chemistry and subsequently encapsulated cell-dense hydrogel spheres in a cell-free hydrogel layer. The hydrogel sprouting array supported pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. iPSC-ECs in the sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin, which confirms their functional role in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds from the US Environmental Protection Agency's ToxCast library identified six compounds that inhibited iPSC-EC sprouting and five compounds that were overtly cytotoxic to iPSC-ECs at a single concentration. The chemically-defined iPSC-EC sprouting model (iSM) is thus amenable to enhanced-throughput screening of small molecular libraries for effects on angiogenic sprouting and iPSC-EC toxicity assessment.
Angiogenesis assays that are commonly used for drug screening and toxicity assessment applications typically utilize natural substrates like Matrigel(TM) that are difficult to spatially pattern, costly, ill-defined, and may exhibit lot-to-lot variability. Herein, we describe a novel angiogenic sprouting assay using chemically-defined, bioinert poly(ethylene glycol) hydrogels functionalized with biomimetic peptides to promote cell attachment and degradation in a reproducible format that may mitigate the need for natural substrates. The quantitative assay of angiogenic sprouting here enables precise control over the initial conditions and can be formulated into arrays for screening. The sprouting assay here was dependent on key angiogenic signaling axes in a screen of angiogenesis inhibitors and a blinded screen of putative vascular disrupting compounds from the US-EPA.
生长因子激活血管内皮细胞(ECs)会在体内血管生成过程中引发一系列事件,包括EC尖端细胞选择、芽形成、EC茎细胞增殖,最终由支持细胞实现血管稳定。尽管EC功能检测可以在体外重现血管生成的一个或多个方面,但它们通常受到不确定的底物以及缺乏对关键血管生成信号轴的依赖性的限制。在此,我们设计并表征了一种使用人诱导多能干细胞衍生的内皮细胞(iPSC-ECs)的体外化学定义的内皮芽生行为模型。我们使用硫醇-烯化学方法将iPSC-ECs以高密度快速封装在聚(乙二醇)(PEG)水凝胶球中,随后将细胞密集的水凝胶球封装在无细胞水凝胶层中。水凝胶芽生阵列支持iPSC-ECs的促血管生成表型,并支持生长因子依赖性增殖和芽生行为。芽生模型中的iPSC-ECs对几种血管内皮生长因子、NF-κB、基质金属蛋白酶-2/9、蛋白激酶活性和β-微管蛋白的参考药理血管生成抑制剂有适当反应,这证实了它们在内皮芽生中的功能作用。对美国环境保护局ToxCast库中38种假定的血管破坏化合物进行的盲筛鉴定出6种抑制iPSC-EC芽生的化合物和5种在单一浓度下对iPSC-ECs有明显细胞毒性的化合物。因此,化学定义的iPSC-EC芽生模型(iSM)适用于对小分子文库进行高通量筛选,以评估其对血管生成芽生的影响和iPSC-EC毒性。
常用于药物筛选和毒性评估应用的血管生成检测通常使用如基质胶(Matrigel™)等天然底物,这些底物难以进行空间模式化、成本高、定义不明确且可能存在批次间差异。在此,我们描述了一种新型的血管生成芽生检测方法,该方法使用经仿生肽功能化的化学定义的、生物惰性的聚(乙二醇)水凝胶,以可重复的形式促进细胞附着和降解,这可能减少对天然底物的需求。此处血管生成芽生的定量检测能够精确控制初始条件,并可制成阵列进行筛选。此处的芽生检测在血管生成抑制剂筛选以及对美国环保署假定的血管破坏化合物的盲筛中依赖于关键的血管生成信号轴。