Suppr超能文献

次极量蹬车运动试验中实际与预测的心血管需求

Actual Versus Predicted Cardiovascular Demands in Submaximal Cycle Ergometer Testing.

作者信息

Hoehn Amanda M, Mullenbach Megan J, Fountaine Charles J

机构信息

Department of Health, Physical Education and Recreation, University of Minnesota Duluth, Duluth, MN, USA.

出版信息

Int J Exerc Sci. 2015 Jan 1;8(1):4-10. doi: 10.70252/XFKJ1279. eCollection 2015.

Abstract

The Astrand-Rhyming cycle ergometer test (ARCET) is a commonly administered submaximal test for estimating aerobic capacity. Whereas typically utilized in clinical populations, the validity of the ARCET to predict VO in a non-clinical population, especially female, is less clear. Therefore, the purpose of this study was to determine the accuracy of the ARCET in a sample of healthy and physically active college students. Subjects (13 females, 10 males) performed a maximal cycle ergometer test to volitional exhaustion to determine VO. At least 48 hours later, subjects performed the ARCET protocol. Predicted VO was calculated following the ARCET format using the age corrected factor. There was no significant difference (p=.045) between actual (41.0±7.97 ml/kg/min) and predicted VO (40.3±7.58 ml/kg/min). When split for gender there was a significant difference between actual and predicted VO for males, (45.1±7.74 vs. 42.7±8.26 ml/kg/min, p=0.029) but no significant difference observed for females, (37.9±6.9 vs. 38.5±6.77 ml/kg/min, p=0.675). The correlation between actual and predicted VO was r=0.84, p<0.001 with an SEE= 4.3 ml/kg/min. When split for gender, the correlation for males was r=0.94, p<0.001, SEE=2.72 ml/kg/min; for females, r=0.74, p=0.004, SEE=4.67 ml/kg/min. The results of this study indicate that the ARCET accurately estimated VO in a healthy college population of both male and female subjects. Implications of this study suggest the ARCET can be used to assess aerobic capacity in both fitness and clinical settings where measurement via open-circuit spirometry is either unavailable or impractical.

摘要

阿斯兰德-赖明循环测力计测试(ARCET)是一种常用的次最大量测试,用于评估有氧能力。虽然ARCET通常用于临床人群,但在非临床人群(尤其是女性)中预测VO的有效性尚不清楚。因此,本研究的目的是确定ARCET在健康且有体育活动的大学生样本中的准确性。受试者(13名女性,10名男性)进行了最大循环测力计测试,直至自愿疲劳以确定VO。至少48小时后,受试者执行ARCET方案。使用年龄校正因子按照ARCET格式计算预测VO。实际VO(41.0±7.97毫升/千克/分钟)与预测VO(40.3±7.58毫升/千克/分钟)之间无显著差异(p = 0.045)。按性别划分时,男性实际VO与预测VO之间存在显著差异(45.1±7.74对42.7±8.26毫升/千克/分钟,p = 0.029),但女性未观察到显著差异(37.9±6.9对38.5±6.77毫升/千克/分钟,p = 0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98b4/4831853/ec28d790320d/ijes_08_01_04f1.jpg

相似文献

1
Actual Versus Predicted Cardiovascular Demands in Submaximal Cycle Ergometer Testing.
Int J Exerc Sci. 2015 Jan 1;8(1):4-10. doi: 10.70252/XFKJ1279. eCollection 2015.
5
Validity of VO2max equations for aerobically trained males and females.
Med Sci Sports Exerc. 2004 Aug;36(8):1427-32. doi: 10.1249/01.mss.0000135795.60449.ce.
7
Validity of Submaximal Step Tests to Estimate Maximal Oxygen Uptake in Healthy Adults.
Sports Med. 2016 May;46(5):737-50. doi: 10.1007/s40279-015-0445-1.
9
Estimation of VO2max: a comparative analysis of five exercise tests.
Res Q Exerc Sport. 1991 Mar;62(1):73-8. doi: 10.1080/02701367.1991.10607521.

引用本文的文献

1
Population and Age-Based Cardiorespiratory Fitness Level Investigation and Automatic Prediction.
Front Cardiovasc Med. 2022 Jan 5;8:758589. doi: 10.3389/fcvm.2021.758589. eCollection 2021.

本文引用的文献

2
Cross-validation of the YMCA submaximal cycle ergometer test to predict VO2max.
Res Q Exerc Sport. 2004 Sep;75(3):337-42. doi: 10.1080/02701367.2004.10609165.
3
Validity of the Astrand-Ryhming nomogram for predicting maximal oxygen intake.
Br J Sports Med. 1981 Sep;15(3):182-5. doi: 10.1136/bjsm.15.3.182.
4
Evaluation of a maximal predictive cycle ergometer test of aerobic power.
Eur J Appl Physiol Occup Physiol. 1982;49(1):131-40. doi: 10.1007/BF00428971.
5
A comparison of various methods for the determination of VO2max.
Eur J Appl Physiol Occup Physiol. 1980;45(2-3):117-24. doi: 10.1007/BF00421319.
6
Predictability of VO2 max from submaximal cycle ergometer and bench stepping tests.
Br J Sports Med. 1985 Jun;19(2):85-8. doi: 10.1136/bjsm.19.2.85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验