Suppr超能文献

一种海洋蓝藻噬菌体利用宿主核糖核酸酶E活性的新策略。

A Novel Strategy for Exploitation of Host RNase E Activity by a Marine Cyanophage.

作者信息

Stazic Damir, Pekarski Irena, Kopf Matthias, Lindell Debbie, Steglich Claudia

机构信息

Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.

Department of Biology, Technion Institute of Technology, Haifa 32000, Israel.

出版信息

Genetics. 2016 Jul;203(3):1149-59. doi: 10.1534/genetics.115.183475. Epub 2016 May 11.

Abstract

Previous studies have shown that infection of Prochlorococcus MED4 by the cyanophage P-SSP7 leads to increased transcript levels of host endoribonuclease (RNase) E. However, it has remained enigmatic whether this is part of a host defense mechanism to degrade phage messenger RNA (mRNA) or whether this single-strand RNA-specific RNase is utilized by the phage. Here we describe a hitherto unknown means through which this cyanophage increases expression of RNase E during phage infection and concomitantly protects its own RNA from degradation. We identified two functionally different RNase E mRNA variants, one of which is significantly induced during phage infection. This transcript lacks the 5' UTR, is considerably more stable than the other transcript, and is likely responsible for increased RNase E protein levels during infection. Furthermore, selective enrichment and in vivo analysis of double-stranded RNA (dsRNA) during infection revealed that phage antisense RNAs (asRNAs) sequester complementary mRNAs to form dsRNAs, such that the phage protein-coding transcriptome is nearly completely covered by asRNAs. In contrast, the host protein-coding transcriptome is only partially covered by asRNAs. These data suggest that P-SSP7 orchestrates degradation of host RNA by increasing RNase E expression while masking its own transcriptome from RNase E degradation in dsRNA complexes. We propose that this combination of strategies contributes significantly to phage progeny production.

摘要

先前的研究表明,蓝藻噬菌体P-SSP7感染原绿球藻MED4会导致宿主核糖核酸酶(RNase)E的转录水平升高。然而,这是宿主降解噬菌体信使核糖核酸(mRNA)的防御机制的一部分,还是这种单链RNA特异性核糖核酸酶被噬菌体利用,一直是个谜。在这里,我们描述了一种迄今为止未知的方式,通过这种方式,这种蓝藻噬菌体在噬菌体感染期间增加RNase E的表达,并同时保护其自身的RNA不被降解。我们鉴定出两种功能不同的RNase E mRNA变体,其中一种在噬菌体感染期间被显著诱导。该转录本缺乏5'非翻译区(UTR),比另一种转录本稳定得多,并且可能是感染期间RNase E蛋白水平升高的原因。此外,感染期间双链RNA(dsRNA)的选择性富集和体内分析表明,噬菌体反义RNA(asRNA)隔离互补mRNA以形成dsRNA,从而使噬菌体蛋白质编码转录组几乎完全被asRNA覆盖。相比之下,宿主蛋白质编码转录组仅部分被asRNA覆盖。这些数据表明,P-SSP7通过增加RNase E的表达来协调宿主RNA的降解,同时在dsRNA复合物中保护其自身转录组不被RNase E降解。我们认为,这种策略组合对噬菌体后代的产生有显著贡献。

相似文献

1
A Novel Strategy for Exploitation of Host RNase E Activity by a Marine Cyanophage.
Genetics. 2016 Jul;203(3):1149-59. doi: 10.1534/genetics.115.183475. Epub 2016 May 11.
2
Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection.
Nucleic Acids Res. 2011 Jun;39(11):4890-9. doi: 10.1093/nar/gkr037. Epub 2011 Feb 15.
3
4
Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations.
PLoS Biol. 2005 May;3(5):e144. doi: 10.1371/journal.pbio.0030144. Epub 2005 Apr 19.
5
The P-SSP7 cyanophage has a linear genome with direct terminal repeats.
PLoS One. 2012;7(5):e36710. doi: 10.1371/journal.pone.0036710. Epub 2012 May 11.
6
Temporal transcriptomes of a marine cyanopodovirus and its Synechococcus host during infection.
Microbiologyopen. 2021 Jan;10(1):e1150. doi: 10.1002/mbo3.1150. Epub 2020 Dec 30.
7
Gene Expression Patterns during Light and Dark Infection of Prochlorococcus by Cyanophage.
PLoS One. 2016 Oct 27;11(10):e0165375. doi: 10.1371/journal.pone.0165375. eCollection 2016.
8
The double-stranded transcriptome of Escherichia coli.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3134-9. doi: 10.1073/pnas.1315974111. Epub 2014 Jan 22.
9
Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus.
Sci Rep. 2017 Mar 10;7:44176. doi: 10.1038/srep44176.
10
Transcriptome dynamics of a broad host-range cyanophage and its hosts.
ISME J. 2016 Jun;10(6):1437-55. doi: 10.1038/ismej.2015.210. Epub 2015 Dec 1.

引用本文的文献

1
Regulation of RNase E during the UV stress response in the cyanobacterium sp. PCC 6803.
mLife. 2023 Feb 15;2(1):43-57. doi: 10.1002/mlf2.12056. eCollection 2023 Mar.
2
"Life is short, and art is long": RNA degradation in cyanobacteria and model bacteria.
mLife. 2022 Mar 24;1(1):21-39. doi: 10.1002/mlf2.12015. eCollection 2022 Mar.
3
The role of the 5' sensing function of ribonuclease E in cyanobacteria.
RNA Biol. 2024 Jan;21(1):1-18. doi: 10.1080/15476286.2024.2328438. Epub 2024 Mar 12.
5
A Cyanophage MarR-Type Transcription Factor Regulates Host RNase E Expression during Infection.
Microorganisms. 2022 Nov 13;10(11):2245. doi: 10.3390/microorganisms10112245.
8
Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Strain WH7803.
Front Microbiol. 2020 Jul 24;11:1707. doi: 10.3389/fmicb.2020.01707. eCollection 2020.
9
Bacterial RNA Degradosomes: Molecular Machines under Tight Control.
Trends Biochem Sci. 2020 Jan;45(1):42-57. doi: 10.1016/j.tibs.2019.10.002. Epub 2019 Nov 1.
10
Widespread Antisense Transcription in Prokaryotes.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.RWR-0029-2018.

本文引用的文献

1
The complexity of bacterial transcriptomes.
J Biotechnol. 2016 Aug 20;232:69-78. doi: 10.1016/j.jbiotec.2015.09.041. Epub 2015 Oct 9.
2
The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria.
Plant Cell. 2014 Sep;26(9):3661-79. doi: 10.1105/tpc.114.129767. Epub 2014 Sep 23.
4
5
The double-stranded transcriptome of Escherichia coli.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3134-9. doi: 10.1073/pnas.1315974111. Epub 2014 Jan 22.
6
Library preparation methods for next-generation sequencing: tone down the bias.
Exp Cell Res. 2014 Mar 10;322(1):12-20. doi: 10.1016/j.yexcr.2014.01.008. Epub 2014 Jan 15.
7
Biases in small RNA deep sequencing data.
Nucleic Acids Res. 2014 Feb;42(3):1414-26. doi: 10.1093/nar/gkt1021. Epub 2013 Nov 5.
8
Gene expression control by selective RNA processing and stabilization in bacteria.
FEMS Microbiol Lett. 2013 Jul;344(2):104-13. doi: 10.1111/1574-6968.12162. Epub 2013 May 13.
9
RNase E: at the interface of bacterial RNA processing and decay.
Nat Rev Microbiol. 2013 Jan;11(1):45-57. doi: 10.1038/nrmicro2930.
10
Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle.
PLoS One. 2012;7(8):e43432. doi: 10.1371/journal.pone.0043432. Epub 2012 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验