Suppr超能文献

反义 RNA 通过噬菌体感染过程中 RNA-RNA 双链的形成来保护 mRNA 免受 RNase E 的降解。

Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection.

机构信息

Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.

出版信息

Nucleic Acids Res. 2011 Jun;39(11):4890-9. doi: 10.1093/nar/gkr037. Epub 2011 Feb 15.

Abstract

The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg(2+), pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA-mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.

摘要

海洋中具有重要生态地位的原绿球藻是光合自养生物中基因组最小的,其蛋白调控因子数量减少,而调控 RNA 的数量却不成比例地增加。其中许多是反义 RNA,这就提出了一个问题,即它们是否通过保护 mRNA 免受 RNase E 降解来调节基因表达。为了解决这个问题,我们从海洋原绿球藻 MED4 中产生了重组 RNase E,该酶在 12 mM Mg2+、pH9 和 35°C 下的活性最佳。用这种重组蛋白进行了 RNase E 切割实验,以评估在单链或双链 RNA 底物存在的情况下酶的活性。我们发现,长达 3.5 和 7kb 的反义 RNA 可保护一组在噬菌体感染期间积累的 mRNA 免受 RNase E 降解。这些反义 RNA-mRNA 双链形成了 RNase E 识别的单链的掩蔽物,导致 mRNA 的稳定性增加。这种相互作用直接调节 RNA 的稳定性,并为噬菌体感染期间某些 mRNA 的转录丰度增加提供了解释。免受 RNase E 触发的 RNA 降解的保护可能构成细菌 cis-反义 RNA 的一个迄今未知的调节功能,从而影响基因表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91b7/3113571/1a95d2bfce8e/gkr037f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验