Suppr超能文献

具有扩散和时滞效应的植物-传粉者模型中的分支和时间周期模式。

Bifurcation and temporal periodic patterns in a plant-pollinator model with diffusion and time delay effects.

作者信息

Huang Jirong, Liu Zhihua, Ruan Shigui

机构信息

a School of Mathematical Sciences , Beijing Normal University , Beijing , People's Republic of China.

b Department of Mathematics , University of Miami , Coral Gables , FL , USA.

出版信息

J Biol Dyn. 2017 Mar;11(sup1):138-159. doi: 10.1080/17513758.2016.1181802. Epub 2016 May 17.

Abstract

This paper deals with a plant-pollinator model with diffusion and time delay effects. By considering the distribution of eigenvalues of the corresponding linearized equation, we first study stability of the positive constant steady-state and existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated. We then derive an explicit formula for determining the direction and stability of the Hopf bifurcation by applying the normal form theory and the centre manifold reduction for partial functional differential equations. Finally, we present an example and numerical simulations to illustrate the obtained theoretical results.

摘要

本文研究了一个具有扩散和时滞效应的植物-传粉者模型。通过考虑相应线性化方程特征值的分布,我们首先研究了正常数稳态的稳定性,并研究了空间齐次和空间非齐次周期解的存在性。然后,我们应用部分泛函微分方程的范式理论和中心流形约化方法,推导出一个确定霍普夫分岔方向和稳定性的显式公式。最后,我们给出一个例子和数值模拟来说明所得到的理论结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验