Huang Jirong, Liu Zhihua, Ruan Shigui
a School of Mathematical Sciences , Beijing Normal University , Beijing , People's Republic of China.
b Department of Mathematics , University of Miami , Coral Gables , FL , USA.
J Biol Dyn. 2017 Mar;11(sup1):138-159. doi: 10.1080/17513758.2016.1181802. Epub 2016 May 17.
This paper deals with a plant-pollinator model with diffusion and time delay effects. By considering the distribution of eigenvalues of the corresponding linearized equation, we first study stability of the positive constant steady-state and existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated. We then derive an explicit formula for determining the direction and stability of the Hopf bifurcation by applying the normal form theory and the centre manifold reduction for partial functional differential equations. Finally, we present an example and numerical simulations to illustrate the obtained theoretical results.
本文研究了一个具有扩散和时滞效应的植物-传粉者模型。通过考虑相应线性化方程特征值的分布,我们首先研究了正常数稳态的稳定性,并研究了空间齐次和空间非齐次周期解的存在性。然后,我们应用部分泛函微分方程的范式理论和中心流形约化方法,推导出一个确定霍普夫分岔方向和稳定性的显式公式。最后,我们给出一个例子和数值模拟来说明所得到的理论结果。