Rocky Mountain Research Station, US Forest Service, 507 25th Street, Ogden, UT, 84401, USA.
Department of Statistics, Colorado State University, 212 Statistics Building, Fort Collins, CO, 80523-1877, USA.
Glob Chang Biol. 2016 Oct;22(10):3518-28. doi: 10.1111/gcb.13358. Epub 2016 Jun 29.
We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven possible 'shapes'. It also provides parameters summarizing the patterns of each change including year of onset, duration, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest, and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We provide our code in the r package ShapeSelectForest on the Comprehensive R Archival Network and describe our computational approaches for running the method over large geographic areas. We also discuss how this methodology is currently being used for forest disturbance and attribute mapping across the conterminous United States.
我们提出了一种新的方法,用于将非参数形状限制回归样条拟合到 Landsat 图像的时间序列中,以便对近三十年的年度森林干扰动态进行建模、制图和监测。对于时间 Landsat 数据中的每个像素和选择的光谱波段或指数,我们的方法提供了轨迹的平滑表示,该轨迹被约束为以生态上合理的方式表现,反映了七种可能的“形状”之一。它还提供了总结每个变化模式的参数,包括发病年份、持续时间、幅度以及生长或恢复的前后变化率。通过一个以火灾、收获和树皮甲虫爆发为特征的案例研究,我们说明了如何将拟合值和参数输入到经验模型中,以绘制随时间发生的干扰因果因子和树冠覆盖变化图。我们在 Comprehensive R Archival Network 上的 r 包 ShapeSelectForest 中提供了我们的代码,并描述了我们在大地理区域上运行该方法的计算方法。我们还讨论了这种方法目前如何用于美国大陆的森林干扰和属性制图。