Wang Tuo, Yang Hui, Kubicki James D, Hong Mei
Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Department of Geosciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
Biomacromolecules. 2016 Jun 13;17(6):2210-22. doi: 10.1021/acs.biomac.6b00441. Epub 2016 May 26.
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal, and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of (13)C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, and has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.
细菌、藻类和动物来源的天然纤维素已经通过X射线、中子衍射和固态核磁共振光谱进行了深入的结构研究,已知其由两种同质多晶型物Iα和Iβ以不同比例组成,这两种同质多晶型物在氢键、链堆积和局部构象方面存在差异。相比之下,由于植物纤维素结晶度较低且与基质多糖存在广泛相互作用,人们对植物初生细胞壁中的纤维素结构了解较少。在这里,我们将高磁场下的二维魔角旋转(MAS)固态核磁共振(固态NMR)光谱与密度泛函理论(DFT)计算相结合,以获取有关植物初生壁纤维素的结构多态性和空间分布的详细信息。几种模式植物的均匀(13)C标记细胞壁的二维(13)C-(13)C相关光谱解析出七组纤维素化学位移。其中,五组(标记为a-e)属于微纤丝内部的纤维素,而两组(f和g)可归为表面纤维素。重要的是,大多数内部纤维素的(13)C化学位移与Iα和Iβ同质多晶型物的(13)C化学位移有显著差异,这表明植物初生壁纤维素与其他生物体的纤维素在构象、堆积和氢键方面存在不同。具有长混合时间和水极化转移的二维(13)C-(13)C相关实验揭示了这些纤维素结构的空间分布和与基质多糖的相互作用。纤维素f和g是微纤丝表面混合良好的链,纤维素a和b是与表面链存在分子接触的内部链,而纤维素c位于微纤丝的核心,与表面没有自旋扩散接触。有趣的是,纤维素d的化学位移与细菌、藻类和动物纤维素的化学位移差异最为显著,它与半纤维素相互作用,水合程度低,并且在细胞壁松弛过程中受到扩展蛋白的作用。为了获取有关这些植物纤维素C6羟甲基构象的信息,我们以Iα和Iβ晶体结构为模板,通过改变C5-C6扭转角对(13)C化学位移进行了DFT计算。与实验化学位移的比较表明,所有内部纤维素都倾向于tg构象,但纤维素d也有类似的倾向采用gt构象。这些结果表明,植物初生细胞壁中的纤维素由于与基质多糖的相互作用,具有多态结构,并非简单地叠加Iα和Iβ同质多晶型物,从而使其与细菌和动物纤维素区分开来。