Suppr超能文献

通过灵敏度增强的固态核磁共振对盐沼湿地土壤碳进行分子水平的深入研究

Enriched Molecular-Level View of Saline Wetland Soil Carbon by Sensitivity-Enhanced Solid-State NMR.

作者信息

Zhao Wancheng, Thomas Elizabeth C, Debnath Debkumar, Scott Faith J, Mentink-Vigier Frederic, White John R, Cook Robert L, Wang Tuo

机构信息

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

出版信息

J Am Chem Soc. 2025 Jan 8;147(1):519-531. doi: 10.1021/jacs.4c11830. Epub 2024 Dec 19.

Abstract

Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils. Here, we employ solid-state nuclear magnetic resonance (ssNMR) to investigate the molecular-level structure of biopolymers in wetland soils spanning 11 centuries. High-resolution multidimensional spectra, enabled by dynamic nuclear polarization (DNP), demonstrate enduring preservation of molecular structures within herbaceous plant cores, notably condensing aromatic motifs and carbohydrates, even over a millennium, with the preserved cores constituting a decreasing minority among molecules from decomposition and repolymerization with depth and age. Such preserved cores occur alongside molecules from the decomposition of loosely packed parent biopolymers. These findings emphasize the relative vulnerability of coastal wetland SOM when exposed to oxygenated water due to geological and anthropogenic changes.

摘要

土壤有机质(SOM)在减轻温室气体排放以及调节地球气候、碳循环和生物多样性方面发挥着重要作用。湿地土壤占所有土壤有机质的三分之一;然而,在全球范围内,由于海平面上升加剧,沿海湿地土壤正在以更快的速度被侵蚀。我们对湿地碳固存动态的理解落后于旱地土壤。在此,我们采用固态核磁共振(ssNMR)技术来研究跨越11个世纪的湿地土壤中生物聚合物的分子水平结构。由动态核极化(DNP)实现的高分辨率多维光谱表明,草本植物核心内的分子结构能够持久保存,特别是缩合芳香基序和碳水化合物,即使经过一千年也是如此,随着深度和年代的增加,来自分解和再聚合的分子中,保存下来的核心占比逐渐减少。这些保存下来的核心与松散堆积的母体生物聚合物分解产生的分子并存。这些发现强调了由于地质和人为变化,沿海湿地土壤有机质在暴露于含氧水时相对脆弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ae/11726556/9c04df163b3e/ja4c11830_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验