Suppr超能文献

B7-CD28配体-受体家族中的共抑制通路。

Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family.

作者信息

Schildberg Frank A, Klein Sarah R, Freeman Gordon J, Sharpe Arlene H

机构信息

Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA.

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Immunity. 2016 May 17;44(5):955-72. doi: 10.1016/j.immuni.2016.05.002.

Abstract

Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.

摘要

为实现最佳的保护性免疫和耐受性,免疫反应需要得到控制。B7-CD28家族中的共抑制途径提供关键的抑制信号,调节免疫稳态和防御,并保护组织完整性。这些共抑制信号限制免疫反应的强度和持续时间,从而抑制免疫介导的组织损伤,调节炎症的消退,并维持耐受性以预防自身免疫。导致慢性感染的肿瘤和微生物可以利用这些共抑制途径建立免疫抑制微环境,阻碍它们的根除。对T细胞共抑制途径认识的进展激发了免疫治疗的新时代,出现了治疗癌症、自身免疫性疾病、感染性疾病和移植排斥反应的有效药物。在这篇综述中,我们讨论了目前关于B7-CD28家族途径共抑制功能的潜在机制、这些抑制信号对免疫反应的多种功能后果,以及这些关键免疫调节途径的重叠和独特功能的知识。

相似文献

1
Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family.
Immunity. 2016 May 17;44(5):955-72. doi: 10.1016/j.immuni.2016.05.002.
2
Coinhibitory Pathways in Immunotherapy for Cancer.
Annu Rev Immunol. 2016 May 20;34:539-73. doi: 10.1146/annurev-immunol-032414-112049. Epub 2016 Feb 25.
3
The B7:CD28 family and friends: Unraveling coinhibitory interactions.
Immunity. 2024 Feb 13;57(2):223-244. doi: 10.1016/j.immuni.2024.01.013.
4
Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
Immunol Rev. 2008 Aug;224:141-65. doi: 10.1111/j.1600-065X.2008.00649.x.
5
The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3.
Immunol Rev. 2017 Mar;276(1):26-39. doi: 10.1111/imr.12521.
6
The CD28-B7 Family of Co-signaling Molecules.
Adv Exp Med Biol. 2019;1189:25-51. doi: 10.1007/978-981-32-9717-3_2.
7
New checkpoints in cancer immunotherapy.
Immunol Rev. 2017 Mar;276(1):52-65. doi: 10.1111/imr.12524.
8
Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.
Immunol Rev. 2008 Aug;224:166-82. doi: 10.1111/j.1600-065X.2008.00662.x.
9
Autoantigen-Harboring Apoptotic Cells Hijack the Coinhibitory Pathway of T Cell Activation.
Sci Rep. 2018 Jul 12;8(1):10533. doi: 10.1038/s41598-018-28901-0.
10
The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses.
Annu Rev Immunol. 2002;20:29-53. doi: 10.1146/annurev.immunol.20.091101.091806. Epub 2001 Oct 4.

引用本文的文献

1
B7-H3 in Cancer Immunotherapy-Prospects and Challenges: A Review of the Literature.
Cells. 2025 Aug 6;14(15):1209. doi: 10.3390/cells14151209.
2
Targeting immune microenvironment in cervical cancer: current research and advances.
J Transl Med. 2025 Aug 8;23(1):888. doi: 10.1186/s12967-025-06896-3.
4
Modulation of the immune microenvironment using nanomaterials: a new strategy for tumor immunotherapy.
Front Immunol. 2025 Jul 2;16:1614640. doi: 10.3389/fimmu.2025.1614640. eCollection 2025.
5
Association between elevated serum soluble B7-H6 and infection in hemodialysis patients.
Clin Exp Nephrol. 2025 May 27. doi: 10.1007/s10157-025-02705-9.
7
Immunogenicity, Pathogenesis, and Host's Immuno-Responses to Marburg Virus Infection.
Pathogens. 2025 Mar 27;14(4):323. doi: 10.3390/pathogens14040323.
9
MYOSLID: A Critical Modulator of Cancer Hallmarks.
Genes (Basel). 2025 Mar 14;16(3):341. doi: 10.3390/genes16030341.
10
Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy.
Exp Hematol Oncol. 2025 Mar 14;14(1):37. doi: 10.1186/s40164-025-00627-6.

本文引用的文献

1
Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.
Haematologica. 2016 Jun;101(6):757-63. doi: 10.3324/haematol.2015.139253. Epub 2016 Jan 27.
2
Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity.
J Exp Med. 2015 Sep 21;212(10):1603-21. doi: 10.1084/jem.20141030. Epub 2015 Sep 14.
3
Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression.
Cell. 2015 Sep 10;162(6):1229-41. doi: 10.1016/j.cell.2015.08.016. Epub 2015 Aug 27.
4
Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2.
Nat Genet. 2015 Sep;47(9):1056-60. doi: 10.1038/ng.3370. Epub 2015 Aug 10.
6
Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6682-7. doi: 10.1073/pnas.1420370112. Epub 2015 May 11.
8
A New B7:CD28 Family Checkpoint Target for Cancer Immunotherapy: HHLA2.
Clin Cancer Res. 2015 May 15;21(10):2201-3. doi: 10.1158/1078-0432.CCR-14-2658. Epub 2015 Apr 13.
9
NF-κB regulates PD-1 expression in macrophages.
J Immunol. 2015 May 1;194(9):4545-54. doi: 10.4049/jimmunol.1402550. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验