Suppr超能文献

基于小波域中一组精简统计特征的单通道脑电图睡眠阶段分类

Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain.

作者信息

da Silveira Thiago L T, Kozakevicius Alice J, Rodrigues Cesar R

机构信息

Graduate Program in Informatics, Federal University of Santa Maria, Santa Maria, RS, Brazil.

Department of Mathematics, Federal University of Santa Maria, Santa Maria, RS, Brazil.

出版信息

Med Biol Eng Comput. 2017 Feb;55(2):343-352. doi: 10.1007/s11517-016-1519-4. Epub 2016 May 19.

Abstract

The main objective of this study was to enhance the performance of sleep stage classification using single-channel electroencephalograms (EEGs), which are highly desirable for many emerging technologies, such as telemedicine and home care. The proposed method consists of decomposing EEGs by a discrete wavelet transform and computing the kurtosis, skewness and variance of its coefficients at selected levels. A random forest predictor is trained to classify each epoch into one of the Rechtschaffen and Kales' stages. By performing a comprehensive set of tests on 106,376 epochs available from the Physionet public database, it is demonstrated that the use of these three statistical moments has enhanced performance when compared to their application in the time domain. Furthermore, the chosen set of features has the advantage of exhibiting a stable classification performance for all scoring systems, i.e., from 2- to 6-state sleep stages. The stability of the feature set is confirmed with ReliefF tests which show a performance reduction when any individual feature is removed, suggesting that this group of feature cannot be further reduced. The accuracies and kappa coefficients yield higher than 90 % and 0.8, respectively, for all of the 2- to 6-state sleep stage classification cases.

摘要

本研究的主要目的是提高使用单通道脑电图(EEG)进行睡眠阶段分类的性能,这对于许多新兴技术(如远程医疗和家庭护理)非常有必要。所提出的方法包括通过离散小波变换分解脑电图,并计算其在选定水平上系数的峰度、偏度和方差。训练一个随机森林预测器,将每个时段分类为 Rechtschaffen 和 Kales 阶段之一。通过对 Physionet 公共数据库中提供的 106376 个时段进行全面的测试集,结果表明,与在时域中的应用相比,使用这三个统计矩提高了性能。此外,所选特征集具有对所有评分系统(即从 2 到 6 状态睡眠阶段)表现出稳定分类性能的优点。通过 ReliefF 测试证实了特征集的稳定性,该测试表明当去除任何单个特征时性能会降低,这表明这组特征不能进一步减少。对于所有 2 到 6 状态睡眠阶段分类情况,准确率和kappa 系数分别高于 90%和 0.8。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验