Suppr超能文献

脑电(electroencephalogram, EEG)到脑电或心电图(electrocardiogram, ECG)的跨域迁移学习用于卷积神经网络(convolutional neural network, CNN)分类模型。

Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models.

机构信息

Department of Biomedical Engineering, Ming-Chuan University, Taoyuan 333321, Taiwan.

出版信息

Sensors (Basel). 2023 Feb 23;23(5):2458. doi: 10.3390/s23052458.

Abstract

Electroencephalography (EEG) is often used to evaluate several types of neurological brain disorders because of its noninvasive and high temporal resolution. In contrast to electrocardiography (ECG), EEG can be uncomfortable and inconvenient for patients. Moreover, deep-learning techniques require a large dataset and a long time for training from scratch. Therefore, in this study, EEG-EEG or EEG-ECG transfer learning strategies were applied to explore their effectiveness for the training of simple cross-domain convolutional neural networks (CNNs) used in seizure prediction and sleep staging systems, respectively. The seizure model detected interictal and preictal periods, whereas the sleep staging model classified signals into five stages. The patient-specific seizure prediction model with six frozen layers achieved 100% accuracy for seven out of nine patients and required only 40 s of training time for personalization. Moreover, the cross-signal transfer learning EEG-ECG model for sleep staging achieved an accuracy approximately 2.5% higher than that of the ECG model; additionally, the training time was reduced by >50%. In summary, transfer learning from an EEG model to produce personalized models for a more convenient signal can both reduce the training time and increase the accuracy; moreover, challenges such as data insufficiency, variability, and inefficiency can be effectively overcome.

摘要

脑电图 (EEG) 通常用于评估几种类型的神经脑疾病,因为它具有非侵入性和高时间分辨率。与心电图 (ECG) 相比,EEG 可能会让患者感到不适和不便。此外,深度学习技术需要大量数据集和从头开始进行长时间的训练。因此,在这项研究中,应用了 EEG-EEG 或 EEG-ECG 迁移学习策略,分别探索其在癫痫预测和睡眠分期系统中训练简单跨域卷积神经网络 (CNN) 的有效性。癫痫模型检测到发作间期和发作前期,而睡眠分期模型将信号分类为五个阶段。具有六个冻结层的患者特定癫痫预测模型在九名患者中的七名中达到了 100%的准确率,个性化仅需 40 秒的训练时间。此外,用于睡眠分期的跨信号迁移学习 EEG-ECG 模型的准确性比 ECG 模型高约 2.5%;此外,训练时间减少了>50%。总之,从 EEG 模型迁移学习以生成更方便的信号的个性化模型既可以减少训练时间,又可以提高准确性;此外,可以有效克服数据不足、可变性和效率低下等挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验