Suppr超能文献

基于亚时段睡眠阶段的睡眠功能联系及分类策略探索

Exploration of sleep function connection and classification strategies based on sub-period sleep stages.

作者信息

Xu Fangzhou, Zhao Jinzhao, Liu Ming, Yu Xin, Wang Chongfeng, Lou Yitai, Shi Weiyou, Liu Yanbing, Gao Licai, Yang Qingbo, Zhang Baokun, Lu Shanshan, Tang Jiyou, Leng Jiancai

机构信息

International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

出版信息

Front Neurosci. 2023 Jan 25;16:1088116. doi: 10.3389/fnins.2022.1088116. eCollection 2022.

Abstract

BACKGROUND

As a medium for developing brain-computer interface systems, EEG signals are complex and difficult to identify due to their complexity, weakness, and differences between subjects. At present, most of the current research on sleep EEG signals are single-channel and dual-channel, ignoring the research on the relationship between different brain regions. Brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas.

METHODS

Phase-locked value (PLV) is used to construct a functional connection network. The connection network is used to analyze the connection mechanism and brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion. Fourthly, the classification performance optimization strategy is used to discuss the impact of different frequency bands on sleep stage classification performance and to find the optimal frequency band. Finally, the brain function network is constructed by using the average value of the fusion features to analyze the interaction of brain regions in different frequency bands during sleep stages.

RESULTS

The experimental results have shown that when the number of sub-periods is 30, the α (8-13 Hz) frequency band has the best classification effect, The classification result after 10-fold cross-validation reaches 92.59%.

CONCLUSION

The proposed algorithm has good sleep staging performance, which can effectively promote the development and application of an EEG sleep staging system.

摘要

背景

作为开发脑机接口系统的一种媒介,脑电图(EEG)信号复杂,由于其复杂性、微弱性以及个体差异而难以识别。目前,当前对睡眠EEG信号的大多数研究都是单通道和双通道的,忽略了对不同脑区之间关系的研究。脑功能连接被认为与大脑活动密切相关,可用于研究脑区之间的相互作用关系。

方法

使用锁相值(PLV)构建功能连接网络。该连接网络用于分析不同睡眠阶段的连接机制和大脑相互作用。首先,将整个EEG信号划分为多个子时段。其次,对这些子时段使用锁相值进行特征提取。第三,将多个子时段的PLV用于特征融合。第四,采用分类性能优化策略来讨论不同频段对睡眠阶段分类性能的影响,并找到最优频段。最后,利用融合特征的平均值构建脑功能网络,以分析睡眠阶段不同频段脑区的相互作用。

结果

实验结果表明,当子时段数量为30时,α(8 - 13Hz)频段具有最佳分类效果,10折交叉验证后的分类结果达到92.59%。

结论

所提出的算法具有良好的睡眠分期性能,能够有效推动EEG睡眠分期系统的开发与应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f654/9906994/93ab06e00a7a/fnins-16-1088116-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验