Harvard Medical School, Boston, MA, United States.
Brigham and Women's Hospital, Boston, MA, United States.
J Med Internet Res. 2023 Feb 10;25:e40211. doi: 10.2196/40211.
Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch.
We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification of a single epoch using a single-channel electroencephalogram (EEG).
SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal, central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform, and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16 image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time Fourier transform time-frequency images).
The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement of 0.705 (SD 0.077) in reference to the gold standard polysomnography.
SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.
大多数现有的自动化睡眠分期方法依赖于多模态数据,对特定时段进行评分不仅需要当前时段,还需要该时段之前和之后的连续时段序列。
我们提出并测试了一种称为 SleepInceptionNet 的卷积神经网络,它允许使用单通道脑电图 (EEG) 对单个时段进行睡眠分类。
SleepInceptionNet 基于我们对不同 EEG 预处理方法、EEG 通道和卷积神经网络对自动睡眠分期性能的影响的系统评估。该评估使用了 883 名参与者(937,975 个 30 秒时段)的多导睡眠图数据进行。单独使用单个 EEG 通道(即额、中、枕)的原始数据和数据的 3 种特定变换(包括功率谱密度、连续小波变换和短时傅里叶变换)作为卷积神经网络模型的输入。为了对睡眠阶段进行分类,针对 1D 数据(即原始 EEG 和功率谱密度)测试了 7 个顺序深度神经网络,针对 2D 数据(即连续小波变换和短时傅里叶变换时频图像)测试了 16 个图像分类卷积神经网络。
最佳模型 SleepInceptionNet 使用来自中央单通道 EEG 数据的连续小波变换方法开发的时频图像作为输入到 InceptionV3 图像分类器算法,与金标准多导睡眠图相比,Cohen κ 一致性为 0.705(SD 0.077)。
SleepInceptionNet 可以使用单通道 EEG 实现实时自动睡眠分期,这可能对特定睡眠阶段的按需干预或治疗有用。