Rapf Rebecca J, Vaida Veronica
Department of Chemistry and Biochemistry, CIRES, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, USA.
Phys Chem Chem Phys. 2016 Jul 27;18(30):20067-84. doi: 10.1039/c6cp00980h.
Solar radiation was overwhelmingly the largest source of energy on the early Earth. Energy provided by the Sun has the potential to access different chemistries than energy provided by other sources, such as hydrothermal vents, because of the unique characteristics of photochemistry that differentiate it from conventional thermal chemistry. This review considers how sunlight-driven reactions can abiotically generate prebiotic molecules necessary for the evolution of life. We discuss briefly the characteristics of the early Sun and the likely environmental conditions on the early Earth because photochemistry is both environment- and molecule-specific. An overview of the fundamental principles of photophysics and photochemistry is followed by discussion of a selection of prebiotically-relevant examples of photochemical reactions, focusing on syntheses that lead to the production of cellular components (e.g. sugars, lipids, and biopolymer precursors). The role of photostability as an evolutionary driving force is also considered. These examples highlight the ability of simple organic molecules to harness solar energy and convert it into high-energy chemical bonds, generating molecular complexity.
在早期地球上,太阳辐射无疑是最大的能源来源。由于光化学具有区别于传统热化学的独特特性,太阳提供的能量有可能引发与其他能源(如热液喷口)不同的化学反应。本综述探讨了阳光驱动的反应如何非生物地生成生命演化所需的益生元分子。我们简要讨论了早期太阳的特征以及早期地球上可能的环境条件,因为光化学既具有环境特异性,也具有分子特异性。在概述光物理和光化学的基本原理之后,我们将讨论一系列与益生元相关的光化学反应实例,重点关注那些能够产生细胞成分(如糖类、脂质和生物聚合物前体)的合成反应。我们还将探讨光稳定性作为一种进化驱动力的作用。这些实例凸显了简单有机分子利用太阳能并将其转化为高能化学键、从而产生分子复杂性的能力。