Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit Van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Department of Chemical Engineering and Chemistry, Stimuli-Responsive Functional Materials and Devices, Eindhoven University of Technology, Groene Loper 3, Bldg 14 - Helix, 5600 MB, Eindhoven, The Netherlands.
Photochem Photobiol Sci. 2022 May;21(5):705-717. doi: 10.1007/s43630-021-00130-x. Epub 2021 Nov 12.
Sunlight strikes our planet every day with more energy than we consume in an entire year. Therefore, many researchers have explored ways to efficiently harvest and use sunlight energy for the activation of organic molecules. However, implementation of this energy source in the large-scale production of fine chemicals has been mostly neglected. The use of solar energy for chemical transformations suffers from potential drawbacks including scattering, reflections, cloud shading and poor matches between the solar emission and absorption characteristics of the photochemical reaction. In this account, we provide an overview of our efforts to overcome these issues through the development of Luminescent Solar Concentrator-based PhotoMicroreactors (LSC-PM). Such reactors can efficiently convert solar energy with a broad spectral distribution to concentrated and wavelength-shifted irradiation which matches the absorption maximum of the photocatalyst. Hence, the use of these conceptually new photomicroreactors provides an increased solar light harvesting capacity, enabling efficient solar-powered photochemistry.
阳光每天都在猛烈地撞击我们的星球,其能量超过我们一整年所消耗的能量总和。因此,许多研究人员一直在探索有效采集和利用太阳光能来激活有机分子的方法。然而,在精细化学品的大规模生产中,这种能源的应用大多被忽视了。太阳能在化学转化中的应用存在一些潜在的缺点,包括散射、反射、云层遮挡以及太阳能发射与光化学反应吸收特性之间的不匹配。在本报告中,我们通过开发基于发光太阳能集中器的光微反应器(LSC-PM)来克服这些问题。这种反应器可以有效地将具有宽光谱分布的太阳能转化为集中且波长偏移的辐射,从而与光催化剂的吸收最大值相匹配。因此,这些概念新颖的光微反应器的使用提供了更大的太阳能采集能力,从而实现了高效的太阳能驱动的光化学。