Suppr超能文献

琥珀酸在布氏锥虫前循环型锥鞭毛体呼吸链中的作用。

The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.

作者信息

Turrens J F

机构信息

Department of Biochemistry, College of Medicine, University of South Alabama, Mobile 36688.

出版信息

Biochem J. 1989 Apr 15;259(2):363-8. doi: 10.1042/bj2590363.

Abstract

Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.

摘要

通过使用洋地黄皂苷(0 - 70微克/毫克蛋白质)使布氏锥虫前循环型锥鞭毛虫变得可通透。该程序允许偶联的线粒体接触不同的底物。只有琥珀酸和磷酸甘油(而非依赖NADH的底物)能够刺激耗氧量。对完整细胞的荧光研究表明,与哺乳动物线粒体中发生的情况相反,添加琥珀酸会刺激NAD(P)H氧化。添加琥珀酸脱氢酶抑制剂丙二酸会刺激NAD(P)H还原。丙二酸还抑制完整细胞的呼吸和运动,进一步添加琥珀酸可恢复这两者。用分离的线粒体膜进行的实验表明,尽管从琥珀酸到细胞色素c的电子传递可被抗霉素抑制,但NADH - 细胞色素c还原酶对抗霉素不敏感。我们推测呼吸链的NADH - 泛醌部分被NADH - 延胡索酸还原酶取代,该酶使线粒体NADH再氧化,进而为呼吸链生成琥珀酸。布氏锥虫NADH - 延胡索酸还原酶的抑制剂3 - 甲氧基苯乙酸对细胞生长和呼吸的抑制作用进一步支持了这一假说。

相似文献

3
Succinate-dependent metabolism in Trypanosoma cruzi epimastigotes.
Mol Biochem Parasitol. 1992 Aug;54(1):43-50. doi: 10.1016/0166-6851(92)90093-y.
7
Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
Mol Biochem Parasitol. 2002 Aug 28;123(2):135-42. doi: 10.1016/s0166-6851(02)00139-1.
9
A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei.
J Biol Chem. 2005 Apr 29;280(17):16559-70. doi: 10.1074/jbc.M500343200. Epub 2005 Feb 17.
10

引用本文的文献

1
Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids.
Parasitology. 2021 Sep;148(10):1161-1170. doi: 10.1017/S0031182020002425. Epub 2021 Jan 7.
2
Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues.
PLoS Negl Trop Dis. 2017 Sep 5;11(9):e0005886. doi: 10.1371/journal.pntd.0005886. eCollection 2017 Sep.
3
Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi.
J Biol Chem. 2015 Mar 20;290(12):7767-90. doi: 10.1074/jbc.M114.574525. Epub 2015 Jan 26.
4
Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi.
PLoS One. 2013 Jul 22;8(7):e69419. doi: 10.1371/journal.pone.0069419. Print 2013.
6
Inhibition of Porphyromonas gingivalis biofilm by oxantel.
Antimicrob Agents Chemother. 2010 Mar;54(3):1311-4. doi: 10.1128/AAC.00946-09. Epub 2009 Dec 28.
8
Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei.
Mol Microbiol. 2008 Mar;67(5):1125-42. doi: 10.1111/j.1365-2958.2008.06112.x. Epub 2008 Jan 23.
9
Evolution of energy metabolism and its compartmentation in Kinetoplastida.
Kinetoplastid Biol Dis. 2003 Oct 28;2(1):11. doi: 10.1186/1475-9292-2-11.
10
Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones.
Antimicrob Agents Chemother. 2001 Jul;45(7):2023-9. doi: 10.1128/AAC.45.7.2023-2029.2001.

本文引用的文献

2
Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi.
Mol Biochem Parasitol. 1984 Apr;11:37-49. doi: 10.1016/0166-6851(84)90053-7.
3
The utilization of glucose and proline by culture forms of Trypanosoma brucei.
J Protozool. 1972 Nov;19(4):686-90. doi: 10.1111/j.1550-7408.1972.tb03561.x.
4
The effect of diphenylamine on terminal respiration in bloodstream and culture forms of Trypanosoma brucei.
J Protozool. 1972 May;19(2):365-9. doi: 10.1111/j.1550-7408.1972.tb03478.x.
5
The oxidase systems of Moniezia expansa (Cestoda).
Comp Biochem Physiol. 1967 Oct;23(1):277-302. doi: 10.1016/0010-406x(67)90495-1.
6
Fumarate reductase and other mitochondrial activities in Trypanosoma cruzi.
Mol Biochem Parasitol. 1986 May;19(2):163-9. doi: 10.1016/0166-6851(86)90121-0.
7
8
Differential mitochondrial gene expression between slender and stumpy bloodforms of Trypanosoma brucei.
Mol Biochem Parasitol. 1986 Sep;20(3):207-14. doi: 10.1016/0166-6851(86)90100-3.
10
Carbon dioxide fixation in trypanosomatids.
Parasitology. 1975 Aug;71(1):93-107. doi: 10.1017/s003118200005318x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验