Wu Jiang, Ye Jingjing, Zhu Jingjing, Xiao Zecong, He Chaochao, Shi Hongxue, Wang Yadong, Lin Cai, Zhang Hongyu, Zhao Yingzheng, Fu Xiaobing, Chen Hong, Li Xiaokun, Li Lin, Zheng Jie, Xiao Jian
School of Pharmaceutical Sciences Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325035, China.
Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States.
Biomacromolecules. 2016 Jun 13;17(6):2168-77. doi: 10.1021/acs.biomac.6b00398. Epub 2016 May 26.
Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds.
有效的伤口愈合需要在蛋白质、细胞和组织水平上进行复杂、协调的相互作用和反应,涉及生长因子表达、细胞增殖、伤口闭合、肉芽组织形成和血管生成。在本研究中,我们开发了一种基于肝素的凝聚层,它由聚(乙烯基精氨酰天冬氨酸二甘油酯)(PEAD)作为储存基质、肝素作为桥梁和成纤维细胞生长因子-2(FGF2)作为负载物(即肝素-FGF2@PEAD)用于伤口愈合。首先,体外表征证明了FGF2从肝素-FGF2@PEAD凝聚层中的负载效率和控释。接下来的体内研究考察了肝素-FGF2@PEAD凝聚层在体内将FGF2递送至全层切除皮肤伤口后的伤口愈合效率,并与使用生理盐水、肝素@PEAD作为载体和游离FGF2的其他三个对照组进行了比较。汇总的体内数据表明,凝聚层将FGF2控释到伤口显著加速了伤口愈合,其方式包括促进细胞增殖、刺激血管内皮生长因子(VEGF)分泌以促进再上皮化、胶原蛋白沉积和肉芽组织形成,以及增强血小板内皮细胞黏附分子(CD31)和α-平滑肌肌动蛋白(α-SMA)的表达以促进血管成熟。同时,对照组、载体组和游离FGF2组未发现明显的伤口愈合效果,表明凝聚层在伤口愈合过程中发挥了重要作用。这项工作设计了一种合适的递送系统,该系统可以持续、可控地保护和释放FGF2,为伤口的局部治疗提供了有前景的治疗潜力。