Suppr超能文献

通过对木质纤维素废弃物进行热碱和蒸汽爆破联合预处理提高其厌氧生物降解性

Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste.

作者信息

Siddhu Muhammad Abdul Hanan, Li Jianghao, Zhang Jiafu, Huang Yan, Wang Wen, Chen Chang, Liu Guangqing

机构信息

Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

Biomed Res Int. 2016;2016:2786598. doi: 10.1155/2016/2786598. Epub 2016 Apr 20.

Abstract

Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS) for methane production. In this context, steam explosion (SE) and thermal potassium hydroxide (KOH-60°C) treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs), respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS) treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs) methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

摘要

有效改变纤维素结晶、木质素屏蔽和木质纤维素生物质交联等顽固特性是充分发挥生物燃料生产潜力的理想途径。本研究展示了三种不同的预处理效果,以提高玉米秸秆(CS)用于甲烷生产的消化率。在此背景下,蒸汽爆破(SE)和热氢氧化钾(KOH-60°C)处理的CS产生的最大甲烷产量分别为217.5和243.1 mL/gvs,分别比未处理的CS(155.4 mL/gvs)高出40.0%和56.4%。在所有处理中,热氢氧化钾和蒸汽爆破联合预处理(CPTPS)处理的CS非常显著,与未处理的CS相比,甲烷产量提高了88.46%(292.9 mL/gvs)。此外,CPTPS还实现了高达68.90%的最高生物降解率。三种动力学模型很好地模拟了甲烷产量的动态变化。此外,扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)分析表明,CPTPS预处理后物理化学性质发生了最有效的变化。因此,CPTPS可能是一种有前途的方法,用于解构木质纤维素结构的顽固性,以提高厌氧消化的生物降解性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验