Suppr超能文献

表达嵌合抗原受体的现成免疫细胞的转化意义。

Translational Implications for Off-the-shelf Immune Cells Expressing Chimeric Antigen Receptors.

作者信息

Torikai Hiroki, Cooper Laurence Jn

机构信息

Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Ziopharm Oncology Inc., Boston, Massachusetts, USA.

出版信息

Mol Ther. 2016 Aug;24(7):1178-86. doi: 10.1038/mt.2016.106. Epub 2016 May 16.

Abstract

Chimeric antigen receptor (CAR) endows specificity to T-cells independent of human leukocyte antigen (HLA). This enables one immunoreceptor to directly target the same surface antigen on different subsets of tumor cells from multiple HLA-disparate recipients. Most approaches manufacture individualized CAR(+)T-cells from the recipient or HLA-compatible donor, which are revealing promising clinical results. This is the impetus to broaden the number of patients eligible to benefit from adoptive immunotherapy such as to infuse third-party donor derived CAR(+)T-cells. This will overcome issues associated with (i) time to manufacture T-cells, (ii) cost to generate one product for one patient, (iii) inability to generate a product from lymphopenic patients or patient's immune cells fail to complete the manufacturing process, and (iv) heterogeneity of T-cell products produced for or from individual recipients. Establishing a biobank of allogeneic genetically modified immune cells from healthy third-party donors, which are cryopreserved and validated in advance of administration, will facilitate the centralizing manufacturing and widespread distribution of CAR(+)T-cells to multiple points-of-care in a timely manner. To achieve this, it is necessary to engineer an effective strategy to avoid deleterious allogeneic immune responses leading to toxicity and rejection. We review the strategies to establish "off-the-shelf" donor-derived biobanks for human application of CAR(+)T-cells as a drug.

摘要

嵌合抗原受体(CAR)赋予T细胞特异性,使其独立于人类白细胞抗原(HLA)发挥作用。这使得一种免疫受体能够直接靶向来自多个HLA不匹配受体的不同肿瘤细胞亚群上的相同表面抗原。大多数方法是从受体或HLA匹配的供体中制备个体化的CAR(+)T细胞,这些方法已显示出令人鼓舞的临床结果。这推动了扩大有资格从过继性免疫治疗中受益的患者数量,比如输注第三方供体来源的CAR(+)T细胞。这将克服与以下方面相关的问题:(i)T细胞制备时间;(ii)为一名患者生产一种产品的成本;(iii)无法从淋巴细胞减少的患者中制备产品或患者的免疫细胞无法完成制备过程;以及(iv)为个体受体制备或由个体受体产生的T细胞产品的异质性。建立一个来自健康第三方供体的异体基因改造免疫细胞生物样本库,这些细胞在给药前进行冷冻保存和验证,将有助于及时集中生产CAR(+)T细胞并广泛分发给多个医疗点。要实现这一点,有必要设计一种有效的策略来避免导致毒性和排斥反应的有害异体免疫反应。我们综述了建立“现成可用”的供体来源生物样本库的策略,以便将CAR(+)T细胞作为药物应用于人类。

相似文献

1
Translational Implications for Off-the-shelf Immune Cells Expressing Chimeric Antigen Receptors.
Mol Ther. 2016 Aug;24(7):1178-86. doi: 10.1038/mt.2016.106. Epub 2016 May 16.
2
Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
Front Immunol. 2020 Aug 7;11:1965. doi: 10.3389/fimmu.2020.01965. eCollection 2020.
3
Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer.
Expert Opin Biol Ther. 2014 Jul;14(7):947-54. doi: 10.1517/14712598.2014.900540. Epub 2014 Mar 24.
4
A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy.
Mol Ther. 2015 Sep;23(9):1507-18. doi: 10.1038/mt.2015.104. Epub 2015 Jun 10.
5
Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell.
Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):200-215. doi: 10.1016/j.bbcan.2018.01.005. Epub 2018 Jan 31.
6
Establishing guidelines for CAR-T cells: challenges and considerations.
Sci China Life Sci. 2016 Apr;59(4):333-9. doi: 10.1007/s11427-016-5026-5. Epub 2016 Mar 11.
8
Immunotherapy with gene-modified T cells: limiting side effects provides new challenges.
Gene Ther. 2013 Nov;20(11):1029-32. doi: 10.1038/gt.2013.34. Epub 2013 Jun 27.
9
Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies.
Cancer Res. 2015 Sep 15;75(18):3853-64. doi: 10.1158/0008-5472.CAN-14-3321. Epub 2015 Jul 16.
10
Chimeric antigen receptor T cell therapy: 25years in the making.
Blood Rev. 2016 May;30(3):157-67. doi: 10.1016/j.blre.2015.10.003. Epub 2015 Nov 6.

引用本文的文献

1
Allogeneic DNT cell therapy synergizes with T cells to promote anti-leukemic activities while suppressing GvHD.
J Exp Clin Cancer Res. 2025 Jan 28;44(1):28. doi: 10.1186/s13046-024-03247-w.
2
Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer.
Front Immunol. 2025 Jan 9;15:1479483. doi: 10.3389/fimmu.2024.1479483. eCollection 2024.
3
Clinical progress in the development of CAR T cells to treat malignant glioma.
J Neurooncol. 2025 Feb;171(3):571-579. doi: 10.1007/s11060-024-04909-7. Epub 2024 Dec 18.
4
Rejection resistant CD30.CAR-modified Epstein-Barr virus-specific T cells as an off-the-shelf platform for CD30 lymphoma.
Mol Ther Oncol. 2024 May 14;32(2):200814. doi: 10.1016/j.omton.2024.200814. eCollection 2024 Jun 20.
5
Amplification of Signal on Cell Surfaces in Molecular Cascades.
Cells. 2023 Dec 18;12(24):2858. doi: 10.3390/cells12242858.
6
CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy.
Exp Hematol Oncol. 2023 Nov 14;12(1):95. doi: 10.1186/s40164-023-00457-4.
7
Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy.
Mol Cancer. 2023 Feb 16;22(1):35. doi: 10.1186/s12943-023-01738-6.
8
The emerging role of regulatory cell-based therapy in autoimmune disease.
Front Immunol. 2022 Dec 14;13:1075813. doi: 10.3389/fimmu.2022.1075813. eCollection 2022.
9
Efficacy and safety of universal (TCRKO) ARI-0001 CAR-T cells for the treatment of B-cell lymphoma.
Front Immunol. 2022 Oct 6;13:1011858. doi: 10.3389/fimmu.2022.1011858. eCollection 2022.
10
Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19?
Drug Des Devel Ther. 2022 Mar 30;16:951-972. doi: 10.2147/DDDT.S347297. eCollection 2022.

本文引用的文献

1
Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy.
Clin Cancer Res. 2016 Apr 15;22(8):1875-84. doi: 10.1158/1078-0432.CCR-15-1433.
2
Driving CAR T-cells forward.
Nat Rev Clin Oncol. 2016 Jun;13(6):370-83. doi: 10.1038/nrclinonc.2016.36. Epub 2016 Mar 22.
5
CANCER IMMUNOTHERAPY. Baby's leukemia recedes after novel cell therapy.
Science. 2015 Nov 13;350(6262):731. doi: 10.1126/science.350.6262.731.
6
Novel immunotherapies in lymphoid malignancies.
Nat Rev Clin Oncol. 2016 Jan;13(1):25-40. doi: 10.1038/nrclinonc.2015.187. Epub 2015 Nov 3.
7
Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases.
Mol Ther. 2016 Mar;24(3):570-81. doi: 10.1038/mt.2015.197. Epub 2015 Oct 27.
8
CAR therapy: the CD19 paradigm.
J Clin Invest. 2015 Sep;125(9):3392-400. doi: 10.1172/JCI80010. Epub 2015 Sep 1.
9
Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies.
Cancer Res. 2015 Sep 15;75(18):3853-64. doi: 10.1158/0008-5472.CAN-14-3321. Epub 2015 Jul 16.
10
The pharmacology of second-generation chimeric antigen receptors.
Nat Rev Drug Discov. 2015 Jul;14(7):499-509. doi: 10.1038/nrd4597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验