van Roermund Carlo W T, Schroers Martin G, Wiese Jan, Facchinelli Fabio, Kurz Samantha, Wilkinson Sabrina, Charton Lennart, Wanders Ronald J A, Waterham Hans R, Weber Andreas P M, Link Nicole
Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany (M.G.S., J.W., F.F., S.K., S.W., L.C., A.P.M.W., N.L.).
Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany (M.G.S., J.W., F.F., S.K., S.W., L.C., A.P.M.W., N.L.)
Plant Physiol. 2016 Jul;171(3):2127-39. doi: 10.1104/pp.16.00540. Epub 2016 May 2.
Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells.
烟酰胺腺嘌呤二核苷酸(NAD)、腺苷一磷酸(AMP)和辅酶A(CoA)等辅助因子对于细胞内多种反应和途径至关重要。需要特定的载体蛋白将这些辅助因子分布到不同的细胞区室,包括过氧化物酶体。我们之前在拟南芥中鉴定出一种过氧化物酶体转运蛋白,称为过氧化物酶体NAD载体(PXN)。在体外检测时,这种载体表现出多种转运功能,例如催化NAD或CoA的导入、NAD/NADH的交换以及CoA的输出。这些观察结果引发了关于PXN在植物中的生理功能的问题。在这里,我们使用酿酒酵母来解决这个问题。首先,我们证实PXN在酵母中表达时具有活性,并靶向酵母过氧化物酶体。其次,详细的摄取分析表明,由于PXN对该底物的亲和力较低,在生理条件下其CoA转运功能可以被排除。第三,我们在多种突变酵母菌株中表达PXN,并研究对突变表型的抑制作用。这些研究提供了强有力的证据,表明PXN不能通过介导NAD/NADH交换来充当CoA转运蛋白或氧化还原穿梭体,而是在完整的酵母细胞中催化NAD与AMP逆向进入过氧化物酶体。