Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40,225 Düsseldorf, Germany.
Biomolecules. 2020 Aug 12;10(8):1174. doi: 10.3390/biom10081174.
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5'-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
过氧化物酶体是真核生物细胞器,对生长和发育至关重要。它们具有高度的代谢活性,容纳许多生化反应,包括脂质代谢和信号分子的合成。这些代谢途径中的大多数与其他隔室(如内质网(ER)、线粒体和质体)共享。过氧化物体与所有其他细胞细胞器一样,依赖于广泛的辅助因子,如腺嘌呤核苷三磷酸(ATP)、辅酶 A(CoA)和烟酰胺腺嘌呤二核苷酸(NAD)。过氧化物体辅助因子池的可用性控制过氧化物体的功能。这些可用于过氧化物体代谢的辅助因子的水平取决于合成、导入、导出、结合和降解之间的平衡。由于认为辅助因子合成的最后步骤位于细胞质中,因此必须将辅助因子导入过氧化物体。这篇综述概述了我们目前对过氧化物体膜通透性的了解,重点是 ATP、CoA 和 NAD。几种位于过氧化物体中的线粒体载体家族成员催化这些有机辅助因子穿过过氧化物体膜的转移。这些过氧化物体辅助因子转运蛋白的大多数功能都是通过对酵母、人类和植物的研究来了解的。这里讨论了不同生物体中转运蛋白的相似之处和差异。