Suppr超能文献

移动旁路信号通过破坏茎尖分生组织维持、细胞分裂素信号传导和WUS转录因子表达来抑制茎的生长。

The Mobile bypass Signal Arrests Shoot Growth by Disrupting Shoot Apical Meristem Maintenance, Cytokinin Signaling, and WUS Transcription Factor Expression.

作者信息

Lee Dong-Keun, Parrott David L, Adhikari Emma, Fraser Nisa, Sieburth Leslie E

机构信息

Department of Biology, University of Utah, Salt Lake City, Utah 84112.

Department of Biology, University of Utah, Salt Lake City, Utah 84112

出版信息

Plant Physiol. 2016 Jul;171(3):2178-90. doi: 10.1104/pp.16.00474. Epub 2016 May 12.

Abstract

The bypass1 (bps1) mutant of Arabidopsis (Arabidopsis thaliana) produces a root-sourced compound (the bps signal) that moves to the shoot and is sufficient to arrest growth of a wild-type shoot; however, the mechanism of growth arrest is not understood. Here, we show that the earliest shoot defect arises during germination and is a failure of bps1 mutants to maintain their shoot apical meristem (SAM). This finding suggested that the bps signal might affect expression or function of SAM regulatory genes, and we found WUSCHEL (WUS) expression to be repressed in bps1 mutants. Repression appears to arise from the mobile bps signal, as the bps1 root was sufficient to rapidly down-regulate WUS expression in wild-type shoots. Normally, WUS is regulated by a balance between positive regulation by cytokinin (CK) and negative regulation by CLAVATA (CLV). In bps1, repression of WUS was independent of CLV, and, instead, the bps signal down-regulates CK responses. Cytokinin treatment of bps1 mutants restored both WUS expression and activity, but only in the rib meristem. How the bps signal down-regulates CK remains unknown, though the bps signal was sufficient to repress expression of one CK receptor (AHK4) and one response regulator (AHP6). Together, these data suggest that the bps signal pathway has the potential for long-distance regulation through modification of CK signaling and altering gene expression.

摘要

拟南芥(Arabidopsis thaliana)的bypass1(bps1)突变体产生一种源自根部的化合物(bps信号),该信号会移动到地上部分,并且足以抑制野生型地上部分的生长;然而,生长抑制的机制尚不清楚。在这里,我们表明最早的地上部分缺陷出现在萌发过程中,是bps1突变体无法维持其茎尖分生组织(SAM)所致。这一发现表明bps信号可能影响SAM调控基因的表达或功能,并且我们发现bps1突变体中WUSCHEL(WUS)的表达受到抑制。这种抑制似乎源于移动的bps信号,因为bps1根足以迅速下调野生型地上部分中WUS的表达。正常情况下,WUS受细胞分裂素(CK)的正向调控和CLAVATA(CLV)的负向调控之间的平衡调节。在bps1中,WUS的抑制独立于CLV,相反,bps信号下调CK反应。用细胞分裂素处理bps1突变体可恢复WUS的表达和活性,但仅在肋状分生组织中。尽管bps信号足以抑制一种CK受体(AHK4)和一种反应调节因子(AHP6)的表达,但bps信号如何下调CK仍不清楚。总之,这些数据表明bps信号通路有可能通过修饰CK信号传导和改变基因表达进行长距离调控。

相似文献

3
Cytokinin Signaling Activates Expression during Axillary Meristem Initiation.
Plant Cell. 2017 Jun;29(6):1373-1387. doi: 10.1105/tpc.16.00579. Epub 2017 Jun 2.
4
WUSCHEL: a master regulator in plant growth signaling.
Plant Cell Rep. 2020 Apr;39(4):431-444. doi: 10.1007/s00299-020-02511-5. Epub 2020 Jan 27.
5
Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7. doi: 10.1073/pnas.1200636109. Epub 2012 Feb 15.
6
The peptidase DA1 cleaves and destabilizes WUSCHEL to control shoot apical meristem size.
Nat Commun. 2024 May 31;15(1):4627. doi: 10.1038/s41467-024-48361-7.
10
Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription.
PLoS Genet. 2018 Apr 16;14(4):e1007351. doi: 10.1371/journal.pgen.1007351. eCollection 2018 Apr.

引用本文的文献

1
Genome-wide identification and functional prediction of homologs in soybean.
Mol Breed. 2023 Jul 24;43(8):59. doi: 10.1007/s11032-023-01403-2. eCollection 2023 Aug.
2
A cryptic natural variant allele of BYPASS2 suppresses the bypass1 mutant phenotype.
Plant Physiol. 2023 May 31;192(2):1016-1027. doi: 10.1093/plphys/kiad124.
3
Lonely at the top? Regulation of shoot apical meristem activity by intrinsic and extrinsic factors.
Curr Opin Plant Biol. 2020 Dec;58:17-24. doi: 10.1016/j.pbi.2020.08.008. Epub 2020 Oct 22.
4
TRANSTHYRETIN-LIKE and BYPASS1-LIKE co-regulate growth and cold tolerance in Arabidopsis.
BMC Plant Biol. 2020 Jul 14;20(1):332. doi: 10.1186/s12870-020-02534-w.
5
BYPASS1-LIKE, A DUF793 Family Protein, Participates in Freezing Tolerance the CBF Pathway in .
Front Plant Sci. 2019 Jun 26;10:807. doi: 10.3389/fpls.2019.00807. eCollection 2019.
6
Emerging strategies for the identification of protein-metabolite interactions.
J Exp Bot. 2019 Sep 24;70(18):4605-4618. doi: 10.1093/jxb/erz228.

本文引用的文献

1
An epidermis-driven mechanism positions and scales stem cell niches in plants.
Sci Adv. 2016 Jan 29;2(1):e1500989. doi: 10.1126/sciadv.1500989. eCollection 2016 Jan.
3
A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14619-24. doi: 10.1073/pnas.1406446111. Epub 2014 Sep 22.
4
Stress and strain provide positional and directional cues in development.
PLoS Comput Biol. 2014 Jan;10(1):e1003410. doi: 10.1371/journal.pcbi.1003410. Epub 2014 Jan 9.
7
Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis.
Plant Cell. 2012 Feb;24(2):519-35. doi: 10.1105/tpc.111.092858. Epub 2012 Feb 28.
8
Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4002-7. doi: 10.1073/pnas.1200636109. Epub 2012 Feb 15.
9
WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex.
Genes Dev. 2011 Oct 1;25(19):2025-30. doi: 10.1101/gad.17258511.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验