Suppr超能文献

基于联合 x-q 空间非局部自相似信息的扩散磁共振成像降噪。

Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

机构信息

Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, USA.

Data Processing Center, Northwestern Polytechnical University, Xi'an, China.

出版信息

Med Image Anal. 2019 Apr;53:79-94. doi: 10.1016/j.media.2019.01.006. Epub 2019 Jan 21.

Abstract

Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local means (NLM) has been shown to be particularly effective. However, most NLM algorithms for diffusion MRI focus on patch matching in the spatial domain (i.e., x-space) and disregard the fact that the data live in a combined 6D space covering both spatial domain and diffusion wavevector domain (i.e., q-space). This drawback leads to inaccurate patch matching in curved white matter structures and hence the inability to effectively use recurrent information for noise reduction. The goal of this paper is to overcome this limitation by extending NLM to the joint x-q space. Specifically, we define for each point in the x-q space a spherical patch from which we extract rotation-invariant features for patch matching. The ability to perform patch matching across q-samples allows patches from differentially orientated structures to be used for effective noise removal. Extensive experiments on synthetic, repeated-acquisition, and HCP data demonstrate that our method outperforms state-of-the-art methods, both qualitatively and quantitatively.

摘要

扩散 MRI 能够深入了解白质微观结构,但信噪比(SNR)较低,尤其是在高扩散加权(即 b 值)时。为了避免耗时的重复采集,通常使用后处理算法来降低噪声。在现有的方法中,非局部均值(NLM)已被证明特别有效。然而,大多数用于扩散 MRI 的 NLM 算法都侧重于空间域(即 x 空间)中的补丁匹配,而忽略了数据存在于同时涵盖空间域和扩散波矢量域(即 q 空间)的联合 6D 空间的事实。这一缺陷导致在弯曲的白质结构中进行不准确的补丁匹配,从而无法有效地利用递归信息来降低噪声。本文的目标是通过将 NLM 扩展到联合 x-q 空间来克服这一限制。具体来说,我们为 x-q 空间中的每个点定义一个球形补丁,从中提取用于补丁匹配的旋转不变特征。在 q 样本之间执行补丁匹配的能力允许来自不同方向的结构的补丁用于有效去除噪声。在合成、重复采集和 HCP 数据上的广泛实验表明,我们的方法在质量和数量上均优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验