Suppr超能文献

基于 x-q 空间图框匹配的扩散磁共振数据去噪。

Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space.

出版信息

IEEE Trans Med Imaging. 2019 Dec;38(12):2838-2848. doi: 10.1109/TMI.2019.2915629. Epub 2019 May 8.

Abstract

Diffusion magnetic resonance imaging (DMRI) suffers from lower signal-to-noise-ratio (SNR) due to MR signal attenuation associated with the motion of water molecules. To improve SNR, the non-local means (NLM) algorithm has demonstrated state-of-the-art performance in noise reduction. However, existing NLM algorithms do not take into account explicitly the fact that DMRI signal can vary significantly with local fiber orientations. Applying NLM naïvely can hence blur subtle structures and aggravate partial volume effects. To overcome this limitation, we improve NLM by performing neighborhood matching in non-flat domains and removing noise with information from both x -space (spatial domain) and q -space (wavevector domain). Specifically, we first encode the q -space sampling domain using a graph. We then perform graph framelet transforms to extract robust rotation-invariant features for each sampling point in x-q space. The resulting features are employed for robust neighborhood matching to locate recurrent information. Finally, we remove noise via an NLM framework. To adapt to the various types of noise in multi-coil MR imaging, we transform the signal before denoising so that it is Gaussian-distributed, allowing noise removal to be carried out in an unbiased manner. Our method is able to more effectively locate recurrent information in white matter structures with different orientations, avoiding the blurring effects caused by naïvely applying NLM. Experiments on synthetic, repetitively-acquired, and infant DMRI data demonstrate that our method is able to preserve subtle structures while effectively removing noise.

摘要

扩散磁共振成像(DMRI)由于水分子运动导致的磁共振信号衰减,其信噪比(SNR)较低。为了提高 SNR,非局部均值(NLM)算法在降噪方面表现出了最先进的性能。然而,现有的 NLM 算法并没有明确考虑到 DMRI 信号可能会随着局部纤维方向的显著变化而变化。因此,盲目应用 NLM 可能会使细微结构模糊,并加剧部分容积效应。为了克服这一限制,我们通过在非平坦域中进行邻域匹配并从 x-空间(空间域)和 q-空间(波矢域)获取信息来改进 NLM,从而去除噪声。具体来说,我们首先使用图对 q-空间采样域进行编码。然后,我们执行图框架变换,以提取 x-q 空间中每个采样点的稳健旋转不变特征。所得特征用于稳健邻域匹配,以定位重复信息。最后,我们通过 NLM 框架去除噪声。为了适应多线圈磁共振成像中的各种类型的噪声,我们在去噪前对信号进行变换,使它服从高斯分布,从而可以以无偏的方式进行噪声去除。我们的方法能够更有效地定位具有不同方向的白质结构中的重复信息,避免了盲目应用 NLM 引起的模糊效应。对合成、重复采集和婴儿 DMRI 数据的实验表明,我们的方法能够在有效去除噪声的同时保留细微结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验