Suppr超能文献

利用分层网络构建从纵向医疗保健队列数据中提取条件性疾病发展情况。

Conditional Disease Development extracted from Longitudinal Health Care Cohort Data using Layered Network Construction.

作者信息

Kannan Venkateshan, Swartz Fredrik, Kiani Narsis A, Silberberg Gilad, Tsipras Giorgos, Gomez-Cabrero David, Alexanderson Kristina, Tegnèr Jesper

机构信息

Computational Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, SE-17176, Stockholm, Sweden.

Center for Molecular Medicine, L8:05, SE-17176, Stockholm, Karolinska Institutet, Sweden.

出版信息

Sci Rep. 2016 May 23;6:26170. doi: 10.1038/srep26170.

Abstract

Health care data holds great promise to be used in clinical decision support systems. However, frequent near-synonymous diagnoses recorded separately, as well as the sheer magnitude and complexity of the disease data makes it challenging to extract non-trivial conclusions beyond confirmatory associations from such a web of interactions. Here we present a systematic methodology to derive statistically valid conditional development of diseases. To this end we utilize a cohort of 5,512,469 individuals followed over 13 years at inpatient care, including data on disability pension and cause of death. By introducing a causal information fraction measure and taking advantage of the composite structure in the ICD codes, we extract an effective directed lower dimensional network representation (100 nodes and 130 edges) of our cohort. Unpacking composite nodes into bipartite graphs retrieves, for example, that individuals with behavioral disorders are more likely to be followed by prescription drug poisoning episodes, whereas women with leiomyoma were more likely to subsequently experience endometriosis. The conditional disease development represent putative causal relations, indicating possible novel clinical relationships and pathophysiological associations that have not been explored yet.

摘要

医疗保健数据在临床决策支持系统中的应用前景广阔。然而,频繁出现的近乎同义的诊断被分别记录,以及疾病数据的巨大规模和复杂性,使得从这样一个相互作用的网络中提取除了验证性关联之外的重要结论具有挑战性。在此,我们提出一种系统方法,以得出具有统计学有效性的疾病条件发展情况。为此,我们利用了一组5512469名个体的数据,这些个体在住院治疗中被跟踪了13年,包括残疾抚恤金和死亡原因的数据。通过引入因果信息分数度量,并利用国际疾病分类(ICD)代码中的复合结构,我们提取了该队列的一个有效的有向低维网络表示(100个节点和130条边)。将复合节点解包为二分图后发现,例如,患有行为障碍的个体更有可能随后出现处方药中毒事件,而患有平滑肌瘤的女性更有可能随后患上子宫内膜异位症。这种条件性疾病发展代表了假定的因果关系,表明了可能尚未被探索的新型临床关系和病理生理关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df10/4876508/2aa43dec0df3/srep26170-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验