Suppr超能文献

维度缩减的极限学习机。

Dimension Reduction With Extreme Learning Machine.

出版信息

IEEE Trans Image Process. 2016 Aug;25(8):3906-18. doi: 10.1109/TIP.2016.2570569. Epub 2016 May 18.

Abstract

Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.

摘要

数据中经常包含噪声或不相关的信息,这会对机器学习算法的泛化能力产生负面影响。降维算法(如主成分分析(PCA)、非负矩阵分解(NMF)、随机投影(RP)和自动编码器(AE))的目标是降低数据中的噪声或不相关信息。PCA(特征向量)和线性 AE 的特征不能将数据表示为部分(例如人脸图像中的鼻子)。另一方面,NMF 和非线性 AE 受到学习速度慢的限制,而 RP 仅表示原始数据的子空间。本文介绍了一种降维框架,该框架在一定程度上将数据表示为部分,具有快速的学习速度,并学习类间散射子空间。为此,本文研究了一种线性和非线性降维框架,称为极限学习机 AE(ELM-AE)和稀疏极限学习机 AE(SELM-AE)。与绑定权重 AE 不同,ELM-AE 和 SELM-AE 中的隐藏神经元不需要调整,它们的参数(例如,加法神经元中的输入权重)分别使用正交和稀疏随机权重初始化。在 USPS 手写数字识别数据集、CIFAR-10 目标识别和 NORB 目标识别数据集上的实验结果表明,线性和非线性 ELM-AE 和 SELM-AE 在判别能力、稀疏性、训练时间和归一化均方误差方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验