Suppr超能文献

基于深度学习和知识图谱的药物-药物相互作用预测:综述

Drug-drug interactions prediction based on deep learning and knowledge graph: A review.

作者信息

Luo Huimin, Yin Weijie, Wang Jianlin, Zhang Ge, Liang Wenjuan, Luo Junwei, Yan Chaokun

机构信息

School of Computer and Information Engineering, Henan University, Kaifeng, China.

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China.

出版信息

iScience. 2024 Feb 7;27(3):109148. doi: 10.1016/j.isci.2024.109148. eCollection 2024 Mar 15.

Abstract

Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.

摘要

药物相互作用(DDIs)可产生不可预测的药理作用,并导致可能对机体造成不可逆损害的不良事件。通过生物学或药理学分析检测药物相互作用的传统方法既耗时又昂贵,因此,迫切需要开发计算方法来有效预测药物相互作用。目前,能够有效提取实体特征的深度学习和知识图谱技术已被广泛用于开发药物相互作用预测方法。在本研究中,我们旨在系统综述应用深度学习和图谱知识的药物相互作用预测研究。本综述首先总结了现有的生物医学数据和与药物相关的公共数据库。然后,我们讨论了利用深度学习和知识图谱技术的现有药物相互作用预测方法,并将它们分为三大类:基于深度学习的方法、基于知识图谱的方法以及将深度学习与知识图谱相结合的方法。我们全面分析了常用的药物相关数据和各种药物相互作用预测方法,并在基准数据集上比较了这些预测方法。最后,我们简要讨论了与药物相互作用预测相关的挑战,包括不对称药物相互作用预测和高阶药物相互作用预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8175/10884936/47ef648064b2/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验