Kjeldsen Eigil
Hemodiagnostic Laboratory, Cancer Cytogenetics Section, Department of Hematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark.
Exp Mol Pathol. 2016 Aug;101(1):38-43. doi: 10.1016/j.yexmp.2016.05.010. Epub 2016 May 20.
Secondary chromosomal aberrations are necessary for development of overt leukemia in t(12;21)/ETV6-RUNX1-positive acute lymphoblastic leukemia (ALL). Conventional cytogenetic analysis supplemented with locus-specific FISH analyses is gold standard to detect important clonal aberrations in this disease group. However, adequate chromosome banding analysis may often be hampered by poor chromosome morphology and banding patterns in pediatric ALL cases, which may hinder identification of possible clinical important additional chromosomal aberrations. We used oligo-based high-resolution aCGH (oaCGH) analysis as an adjunct tool to enhance conventional cytogenetic analysis in pediatric acute B-cell lymphoblastic leukemia in a prospective single center study during a 4-year period (2012-2015). In a consecutive series of 45 pediatric B-ALLs, we identified eight patients with t(12;21)/ETV6-RUNX1 fusion by FISH analysis. In three of the patients, oaCGH analysis revealed concurrent Xq duplication and 6q deletion, which was cryptic by G-banded analysis. FISH analyses with whole chromosome painting probes confirmed the imbalances and showed an unbalanced translocation der(6)t(X;6) in all three patients. A search in the literature revealed two additional pediatric patients with cryptic der(6)t(X;6) in t(12;21)-positive ALLs. No common break points on Xq or 6q could be determined between the five patients. This study highlights the importance of oaCGH analysis as an adjunct cytogenetic tool to detect cryptic chromosomal aberrations. Further, the study adds to understanding the full spectrum of secondary chromosomal aberrations in the very common t(12;21)-positive pediatric ALL disease group. We suggest that the unbalanced der(6)t(X;6), which is cryptic to conventional cytogenetics, is a non-random secondary event in this disease group. It might be that the specific combination of concurrent Xq duplication and 6q-deletion results in gain of possible oncogenes on Xq and loss of possible tumor suppressor genes on 6q that are important for the leukemic propagation of t(12;21)-positive hematopoietic cells in a subset of ALLs.
继发性染色体畸变对于t(12;21)/ETV6-RUNX1阳性急性淋巴细胞白血病(ALL)发展为明显白血病是必要的。传统细胞遗传学分析辅以位点特异性FISH分析是检测该疾病组重要克隆性畸变的金标准。然而,在儿童ALL病例中,适当的染色体显带分析常常因染色体形态和带型不佳而受阻,这可能会妨碍识别可能具有临床重要性的额外染色体畸变。在一项为期4年(2012 - 2015年)的前瞻性单中心研究中,我们使用基于寡核苷酸的高分辨率aCGH(oaCGH)分析作为辅助工具,以加强对儿童急性B淋巴细胞白血病的传统细胞遗传学分析。在连续的45例儿童B-ALL病例中,我们通过FISH分析鉴定出8例t(12;21)/ETV6-RUNX1融合患者。在其中3例患者中,oaCGH分析显示同时存在Xq重复和6q缺失,而在G显带分析中这是隐匿的。用全染色体涂染探针进行的FISH分析证实了这些不平衡,并在所有3例患者中显示出不平衡易位der(6)t(X;6)。文献检索发现另外2例t(12;21)阳性ALL患者存在隐匿性der(6)t(X;6)。这5例患者之间在Xq或6q上未发现共同的断点。本研究强调了oaCGH分析作为检测隐匿性染色体畸变的辅助细胞遗传学工具的重要性。此外,该研究有助于进一步了解非常常见的t(12;21)阳性儿童ALL疾病组中继发性染色体畸变的全貌。我们认为,对传统细胞遗传学隐匿的不平衡der(6)t(X;6)是该疾病组中的一个非随机继发性事件。可能是同时发生的Xq重复和6q缺失的特定组合导致Xq上可能的癌基因增加以及6q上可能的肿瘤抑制基因丢失,这对于一部分ALL中t(12;21)阳性造血细胞的白血病传播很重要。