文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.

作者信息

Zhang Xiaoguang, Liu Peiye, Zhu Lei

机构信息

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.

出版信息

Molecules. 2016 Dec 9;21(12):1697. doi: 10.3390/molecules21121697.


DOI:10.3390/molecules21121697
PMID:27941684
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6274337/
Abstract

This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as "privileged" azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II)- (via an induction period) and copper(I)-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an -(triazolylmethyl)propargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II)- and copper(I)-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/70915f857982/molecules-21-01697-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/65665b329ab8/molecules-21-01697-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/2976cd471572/molecules-21-01697-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/88c7ba1d3d8d/molecules-21-01697-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/dc2930ff4d7c/molecules-21-01697-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/5f44aef1b318/molecules-21-01697-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/df30fece572b/molecules-21-01697-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/8bd136675884/molecules-21-01697-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a900bc66733d/molecules-21-01697-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/1d576ac13b8f/molecules-21-01697-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/de4715f651de/molecules-21-01697-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/02a1e4aadfc0/molecules-21-01697-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/0b6510e2bf93/molecules-21-01697-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/6ac5f4591ff9/molecules-21-01697-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/7ca5da65bb3f/molecules-21-01697-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/d5cae6648069/molecules-21-01697-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a845faef103c/molecules-21-01697-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/9b838b1bb20c/molecules-21-01697-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a8a8fb2199f4/molecules-21-01697-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/5b24c4396283/molecules-21-01697-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/9670be0fcf13/molecules-21-01697-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/bff60e40bebc/molecules-21-01697-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/70915f857982/molecules-21-01697-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/65665b329ab8/molecules-21-01697-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/2976cd471572/molecules-21-01697-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/88c7ba1d3d8d/molecules-21-01697-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/dc2930ff4d7c/molecules-21-01697-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/5f44aef1b318/molecules-21-01697-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/df30fece572b/molecules-21-01697-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/8bd136675884/molecules-21-01697-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a900bc66733d/molecules-21-01697-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/1d576ac13b8f/molecules-21-01697-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/de4715f651de/molecules-21-01697-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/02a1e4aadfc0/molecules-21-01697-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/0b6510e2bf93/molecules-21-01697-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/6ac5f4591ff9/molecules-21-01697-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/7ca5da65bb3f/molecules-21-01697-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/d5cae6648069/molecules-21-01697-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a845faef103c/molecules-21-01697-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/9b838b1bb20c/molecules-21-01697-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/a8a8fb2199f4/molecules-21-01697-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/5b24c4396283/molecules-21-01697-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/9670be0fcf13/molecules-21-01697-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/bff60e40bebc/molecules-21-01697-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/6274337/70915f857982/molecules-21-01697-sch005.jpg

相似文献

[1]
Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.

Molecules. 2016-12-9

[2]
On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.

Chem Rec. 2016-5-24

[3]
Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.

Methods Mol Biol. 2018

[4]
From mechanism to mouse: a tale of two bioorthogonal reactions.

Acc Chem Res. 2011-8-15

[5]
Copper-chelating azides for efficient click conjugation reactions in complex media.

Angew Chem Int Ed Engl. 2014-4-30

[6]
Relative performance of alkynes in copper-catalyzed azide-alkyne cycloaddition.

Bioconjug Chem. 2013-4-8

[7]
Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC).

Molecules. 2016-9-5

[8]
Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation.

Molecules. 2015-2-9

[9]
Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)-Mediated Macrocyclization of Peptides: Impact on Conformation and Biological Activity.

Curr Top Med Chem. 2018

[10]
Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.

Bioconjug Chem. 2015-8-19

引用本文的文献

[1]
New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity.

Molecules. 2022-11-24

[2]
Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights.

Organometallics. 2022-8-8

[3]
A click-based modular approach to introduction of peroxides onto molecules and nanostructures.

RSC Adv. 2020-12-16

[4]
Synthesis of Carbohydrate Based Macrolactones and Their Applications as Receptors for Ion Recognition and Catalysis.

Molecules. 2021-6-3

本文引用的文献

[1]
Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction.

Bioconjug Chem. 2016-10-19

[2]
On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.

Chem Rec. 2016-5-24

[3]
Chemoselective Sequential Click Ligations Directed by Enhanced Reactivity of an Aromatic Ynamine.

Org Lett. 2016-3-22

[4]
Chemically Modifying Viruses for Diverse Applications.

ACS Chem Biol. 2016-5-20

[5]
One-Step Derivatization of Reducing Oligosaccharides for Rapid and Live-Cell-Compatible Chelation-Assisted CuAAC Conjugation.

Chembiochem. 2016-5-3

[6]
Cationic 1,2,3-Triazolium Alkynes: Components To Enhance 1,4-Regioselective Azide-Alkyne Cycloaddition Reactions.

Org Lett. 2016-2-5

[7]
Measuring and Suppressing the Oxidative Damage to DNA During Cu(I)-Catalyzed Azide-Alkyne Cycloaddition.

Bioconjug Chem. 2016-3-16

[8]
Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction".

Sci Adv. 2015-6-12

[9]
Orthogonal bioorthogonal chemistries.

Curr Opin Chem Biol. 2015-10

[10]
Advances in chemical protein modification.

Chem Rev. 2015-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索