Suppr超能文献

通过单线态氧介导的反应进行光活化蛋白标记

Photoactivatable protein labeling by singlet oxygen mediated reactions.

作者信息

To Tsz-Leung, Medzihradszky Katalin F, Burlingame Alma L, DeGrado William F, Jo Hyunil, Shu Xiaokun

机构信息

Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158, USA.

Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA.

出版信息

Bioorg Med Chem Lett. 2016 Jul 15;26(14):3359-3363. doi: 10.1016/j.bmcl.2016.05.034. Epub 2016 May 12.

Abstract

Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling.

摘要

蛋白质-蛋白质相互作用调控着许多生物学过程。因此,鉴定相互作用的蛋白质是从分子层面理解细胞信号传导的重要一步。本研究的目的是探究光生单线态氧和一种小分子在细胞环境中对相互作用蛋白质进行邻近标记的应用。将目标蛋白(POI)与一种小型单线态氧光敏剂(miniSOG)融合,该光敏剂在光照下会产生单线态氧(¹O₂)。局部产生的单线态氧随后激活生物素偶联的硫醇分子,使其与附近的蛋白质形成共价键。然后可以分离标记的蛋白质,随后通过质谱进行鉴定。为了证明这种标记技术的适用性,我们将miniSOG与SCF泛素连接酶的F-box蛋白Skp2融合,并在哺乳动物细胞中表达该融合蛋白,鉴定出其相互作用伴侣Skp1的表面半胱氨酸被生物素-硫醇分子标记。这种光激活蛋白标记方法可能会有重要应用,包括在天然细胞环境中鉴定弱的和瞬时的蛋白质-蛋白质相互作用,以及对蛋白质标记进行时空控制。

相似文献

1
Photoactivatable protein labeling by singlet oxygen mediated reactions.
Bioorg Med Chem Lett. 2016 Jul 15;26(14):3359-3363. doi: 10.1016/j.bmcl.2016.05.034. Epub 2016 May 12.
3
Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium.
Free Radic Biol Med. 2018 Feb 20;116:134-140. doi: 10.1016/j.freeradbiomed.2018.01.014. Epub 2018 Jan 31.
4
Singlet oxygen generation by the genetically encoded tag miniSOG.
J Am Chem Soc. 2013 Jul 3;135(26):9564-7. doi: 10.1021/ja4020524. Epub 2013 Jun 24.
5
Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell.
Photochem Photobiol. 2011 May-Jun;87(3):671-9. doi: 10.1111/j.1751-1097.2011.00900.x. Epub 2011 Feb 22.
7
Activation of ubiquitin ligase SCF(Skp2) by Cks1: insights from hydrogen exchange mass spectrometry.
J Mol Biol. 2006 Oct 27;363(3):673-86. doi: 10.1016/j.jmb.2006.08.032. Epub 2006 Aug 16.
8
Toward singlet oxygen delivery at a measured rate: a self-reporting photosensitizer.
Org Lett. 2014 Jun 6;16(11):2946-9. doi: 10.1021/ol501084n. Epub 2014 May 21.
9
Lysosome-associated miniSOG as a photosensitizer for mammalian cells.
Biotechniques. 2016 Aug 1;61(2):92-4. doi: 10.2144/000114445. eCollection 2016.
10
Photo-induced anticancer activity and singlet oxygen production of prodigiosenes.
Photochem Photobiol Sci. 2018 May 16;17(5):599-606. doi: 10.1039/c8pp00060c.

引用本文的文献

1
2
De Novo Design of Proteins That Bind Naphthalenediimides, Powerful Photooxidants with Tunable Photophysical Properties.
J Am Chem Soc. 2025 Mar 5;147(9):7849-7858. doi: 10.1021/jacs.4c18151. Epub 2025 Feb 21.
3
Lipid- and protein-directed photosensitizer proximity labeling captures the cholesterol interactome.
bioRxiv. 2024 Aug 24:2024.08.20.608660. doi: 10.1101/2024.08.20.608660.
4
µMap proximity labeling in living cells reveals stress granule disassembly mechanisms.
Nat Chem Biol. 2025 Apr;21(4):490-500. doi: 10.1038/s41589-024-01721-2. Epub 2024 Aug 30.
5
SuFEx Chemistry Enables Covalent Assembly of a 280-kDa 18-Subunit Pore-Forming Complex.
J Am Chem Soc. 2024 Sep 11;146(36):25047-25057. doi: 10.1021/jacs.4c07920. Epub 2024 Aug 27.
6
Spatial Chemoproteomics for Mapping the Active Proteome.
Isr J Chem. 2023 Mar;63(3-4). doi: 10.1002/ijch.202200104. Epub 2023 Jan 4.
8
Interrogating biological systems using visible-light-powered catalysis.
Nat Rev Chem. 2021 May;5(5):322-337. doi: 10.1038/s41570-021-00265-6. Epub 2021 Mar 29.
9
Chemical and Biological Strategies for Profiling Protein-Protein Interactions in Living Cells.
Chem Asian J. 2023 Jul 17;18(14):e202300226. doi: 10.1002/asia.202300226. Epub 2023 May 5.
10
A photo-oxidation driven proximity labeling strategy enables profiling of mitochondrial proteome dynamics in living cells.
Chem Sci. 2022 Sep 28;13(40):11943-11950. doi: 10.1039/d2sc04087e. eCollection 2022 Oct 19.

本文引用的文献

2
Singlet oxygen generation by the genetically encoded tag miniSOG.
J Am Chem Soc. 2013 Jul 3;135(26):9564-7. doi: 10.1021/ja4020524. Epub 2013 Jun 24.
3
Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging.
Science. 2013 Mar 15;339(6125):1328-1331. doi: 10.1126/science.1230593. Epub 2013 Jan 31.
4
Mass spectrometry-based proteomics and network biology.
Annu Rev Biochem. 2012;81:379-405. doi: 10.1146/annurev-biochem-072909-100424.
5
Transient protein-protein interactions.
Protein Eng Des Sel. 2011 Sep;24(9):635-48. doi: 10.1093/protein/gzr025. Epub 2011 Jun 15.
6
A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms.
PLoS Biol. 2011 Apr;9(4):e1001041. doi: 10.1371/journal.pbio.1001041. Epub 2011 Apr 5.
7
SnapShot: Protein-protein interaction networks.
Cell. 2011 Mar 18;144(6):1000, 1000.e1. doi: 10.1016/j.cell.2011.02.025.
8
Protein-protein interactions: Interactome under construction.
Nature. 2010 Dec 9;468(7325):851-4. doi: 10.1038/468851a.
9
Transient protein-protein interactions: structural, functional, and network properties.
Structure. 2010 Oct 13;18(10):1233-43. doi: 10.1016/j.str.2010.08.007.
10
Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage.
FEBS J. 2010 Mar;277(6):1465-80. doi: 10.1111/j.1742-4658.2010.07576.x. Epub 2010 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验