Suppr超能文献

强细胞振荡器和弱细胞振荡器对同步及光移相动力学的功能贡献

Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.

作者信息

Roberts Logan, Leise Tanya L, Welsh David K, Holmes Todd C

机构信息

Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA.

Department of Mathematics and Statistics, Amherst College, Amherst, MA.

出版信息

J Biol Rhythms. 2016 Aug;31(4):337-51. doi: 10.1177/0748730416649550. Epub 2016 May 24.

Abstract

Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles in light entrainment may allow us to direct and augment the circadian system to speed recovery from jet lag, shift work, and seasonal affective disorder.

摘要

光是校准昼夜节律神经回路的主要信号,从而使日常生理和行为节律与太阳同步线索相协调。果蝇和哺乳动物的昼夜节律回路由不同类型的细胞振荡器组成,这些振荡器表现出广泛的动态光反应、周期、相位和同步程度。长期以来,异质性的昼夜节律回路如何在保持足够灵活性以响应同步刺激的同时产生稳健的生理节律一直是个谜。隐花色素是一种短波长光感受器,在大约一半的果蝇昼夜节律神经元中内源性表达。在之前的一项研究中,使用果蝇全脑外植体中的实时生物发光记录来测量生理光反应,这些外植体本身仍对光敏感。在这里,我们应用实时生物发光实验数据分析,以单神经元分辨率展示整个昼夜节律回路光同步的详细动态整体表征。器官型全脑外植体要么在恒定黑暗(DD)中维持6天,要么在第二天接受一个相位提前的光脉冲。我们发现,更强的昼夜节律振荡器在DD中支持稳健的整体回路节律性,而较弱的振荡器可能会被推向短暂的不同步和振幅衰减,以促进网络同步的新相移状态。此外,我们使用数学建模来研究由不同振荡器类型组成的网络如何在DD条件下以及对模拟光脉冲的响应中产生复杂的动态特征。模拟结果表明,互补耦合机制以及强弱振荡器的组合可能使昼夜节律网络既稳健又灵活,既能促进同步又能实现同步化。对振荡器特性及其信号传导机制如何促进它们在光同步中发挥不同作用的更全面理解,可能使我们能够指导和增强昼夜节律系统,以加速从时差、轮班工作和季节性情感障碍中恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验