Roberts Logan, Leise Tanya L, Noguchi Takako, Galschiodt Alexis M, Houl Jerry H, Welsh David K, Holmes Todd C
Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA.
Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA.
Curr Biol. 2015 Mar 30;25(7):858-67. doi: 10.1016/j.cub.2015.01.056. Epub 2015 Mar 5.
Circadian neural circuits generate near 24-hr physiological rhythms that can be entrained by light to coordinate animal physiology with daily solar cycles. To examine how a circadian circuit reorganizes its activity in response to light, we imaged period (per) clock gene cycling for up to 6 days at single-neuron resolution in whole-brain explant cultures prepared from per-luciferase transgenic flies. We compared cultures subjected to a phase-advancing light pulse (LP) to cultures maintained in darkness (DD). In DD, individual neuronal oscillators in all circadian subgroups are initially well synchronized but then show monotonic decrease in oscillator rhythm amplitude and synchrony with time. The small ventral lateral neurons (s-LNvs) and dorsal lateral neurons (LNds) exhibit this decrease at a slower relative rate. In contrast, the LP evokes a rapid loss of oscillator synchrony between and within most circadian neuronal subgroups, followed by gradual phase retuning of whole-circuit oscillator synchrony. The LNds maintain high rhythmic amplitude and synchrony following the LP along with the most rapid coherent phase advance. Immunocytochemical analysis of PER shows that these dynamics in DD and LP are recapitulated in vivo. Anatomically distinct circadian neuronal subgroups vary in their response to the LP, showing differences in the degree and kinetics of their loss, recovery and/or strengthening of synchrony, and rhythmicity. Transient desynchrony appears to be an integral feature of light response of the Drosophila multicellular circadian clock. Individual oscillators in different neuronal subgroups of the circadian circuit show distinct kinetic signatures of light response and phase retuning.
昼夜节律神经回路产生近24小时的生理节律,这种节律可被光调节,从而使动物生理与每日太阳周期相协调。为了研究昼夜节律回路如何响应光来重新组织其活动,我们在从per-荧光素酶转基因果蝇制备的全脑外植体培养物中,以单神经元分辨率对周期(per)时钟基因循环进行了长达6天的成像。我们将接受相位提前光脉冲(LP)处理的培养物与维持在黑暗(DD)中的培养物进行了比较。在DD条件下,所有昼夜节律亚组中的单个神经元振荡器最初同步良好,但随后振荡器节律幅度和同步性随时间呈单调下降。小腹外侧神经元(s-LNvs)和背外侧神经元(LNds)以较慢的相对速率呈现这种下降。相比之下,LP会导致大多数昼夜节律神经元亚组之间以及内部的振荡器同步迅速丧失,随后全回路振荡器同步逐渐进行相位调整。LP处理后,LNds与最快速的相干相位提前一起保持高节律幅度和同步性。对PER的免疫细胞化学分析表明,DD和LP中的这些动态变化在体内也会出现。解剖学上不同的昼夜节律神经元亚组对LP的反应各不相同,在同步性丧失、恢复和/或增强的程度和动力学以及节律性方面存在差异。短暂的不同步似乎是果蝇多细胞昼夜节律时钟光反应的一个固有特征。昼夜节律回路中不同神经元亚组中的单个振荡器表现出不同的光反应动力学特征和相位调整。