Suppr超能文献

生物工程微生物群落:它们带来帮助、造成阻碍及引发厌恶的可能性。

Bioengineering microbial communities: Their potential to help, hinder and disgust.

作者信息

Sivasubramaniam Diane, Franks Ashley E

机构信息

a Department of Psychological Sciences , Swinburne University , Melbourne , Victoria , Australia.

b Department of Physiology , Anatomy and Microbiology, La Trobe University , Melbourne , Victoria , Australia.

出版信息

Bioengineered. 2016 Apr;7(3):137-44. doi: 10.1080/21655979.2016.1187346.

Abstract

The bioengineering of individual microbial organisms or microbial communities has great potential in agriculture, bioremediation and industry. Understanding community level drivers can improve community level functions to enhance desired outcomes in complex environments, whereas individual microbes can be reduced to a programmable biological unit for specific output goals. While understanding the bioengineering potential of both approaches leads to a wide range of potential uses, public acceptance of such technology may be the greatest hindrance to its application. Public perceptions and expectations of "naturalness," as well as notions of disgust and dread, may delay the development of such technologies to their full benefit. We discuss these bioengineering approaches and draw on the psychological literature to suggest strategies that scientists can use to allay public concerns over the implementation of this technology.

摘要

单个微生物有机体或微生物群落的生物工程在农业、生物修复和工业领域具有巨大潜力。了解群落层面的驱动因素可以改善群落层面的功能,以在复杂环境中增强预期结果,而单个微生物可以简化为用于特定产出目标的可编程生物单元。虽然了解这两种方法的生物工程潜力会带来广泛的潜在用途,但公众对此类技术的接受度可能是其应用的最大障碍。公众对“天然性”的认知和期望,以及厌恶和恐惧观念,可能会推迟此类技术充分发挥其效益的发展进程。我们讨论了这些生物工程方法,并借鉴心理学文献提出科学家可以用来减轻公众对该技术实施的担忧的策略。

相似文献

1
Bioengineering microbial communities: Their potential to help, hinder and disgust.
Bioengineered. 2016 Apr;7(3):137-44. doi: 10.1080/21655979.2016.1187346.
2
Principles for designing synthetic microbial communities.
Curr Opin Microbiol. 2016 Jun;31:146-153. doi: 10.1016/j.mib.2016.03.010. Epub 2016 Apr 13.
3
Global epistasis and the emergence of function in microbial consortia.
Cell. 2024 Jun 6;187(12):3108-3119.e30. doi: 10.1016/j.cell.2024.04.016. Epub 2024 May 21.
4
Engineering ecosystems and synthetic ecologies.
Mol Biosyst. 2012 Oct;8(10):2470-83. doi: 10.1039/c2mb25133g.
5
Towards Engineering Biological Systems in a Broader Context.
J Mol Biol. 2016 Feb 27;428(5 Pt B):928-44. doi: 10.1016/j.jmb.2015.10.025. Epub 2015 Nov 3.
6
Better together: engineering and application of microbial symbioses.
Curr Opin Biotechnol. 2015 Dec;36:40-9. doi: 10.1016/j.copbio.2015.08.008. Epub 2015 Aug 28.
7
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1343-1358. doi: 10.1007/s10295-019-02211-4. Epub 2019 Jul 5.
8
Emerging strategies for engineering microbial communities.
Biotechnol Adv. 2019 Nov 1;37(6):107372. doi: 10.1016/j.biotechadv.2019.03.011. Epub 2019 Mar 15.
9
Synthetic microbial consortia: from systematic analysis to construction and applications.
Chem Soc Rev. 2014;43(20):6954-81. doi: 10.1039/c4cs00114a. Epub 2014 Jul 14.
10
Mixed consortia in bioprocesses: role of microbial interactions.
Appl Microbiol Biotechnol. 2016 May;100(10):4283-95. doi: 10.1007/s00253-016-7448-1. Epub 2016 Apr 2.

引用本文的文献

1
The Challenge of the Yuck Factor in Public Acceptance of Engineered Living Materials.
Glob Chall. 2025 Apr 25;9(6):2400384. doi: 10.1002/gch2.202400384. eCollection 2025 Jun.
2
Low-cost gelatin/collagen scaffolds for bacterial growth in bioreactors for biotechnology.
Appl Microbiol Biotechnol. 2025 May 8;109(1):113. doi: 10.1007/s00253-025-13491-5.
3
Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review.
Microorganisms. 2024 Feb 20;12(3):433. doi: 10.3390/microorganisms12030433.
4
Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology.
Biomedicines. 2022 Oct 19;10(10):2633. doi: 10.3390/biomedicines10102633.
5
A critical review on microbial carbonate precipitation via denitrification process in building materials.
Bioengineered. 2021 Dec;12(1):7529-7551. doi: 10.1080/21655979.2021.1979862.
6
8
A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells.
Stem Cell Res Ther. 2020 Jul 16;11(1):283. doi: 10.1186/s13287-020-01789-2.
10
Model Microbial Consortia as Tools for Understanding Complex Microbial Communities.
Curr Genomics. 2018 Dec;19(8):723-733. doi: 10.2174/1389202919666180911131206.

本文引用的文献

1
Genetic circuit design automation.
Science. 2016 Apr 1;352(6281):aac7341. doi: 10.1126/science.aac7341.
3
Synthetic biology to access and expand nature's chemical diversity.
Nat Rev Microbiol. 2016 Mar;14(3):135-49. doi: 10.1038/nrmicro.2015.24.
4
Addressing biological uncertainties in engineering gene circuits.
Integr Biol (Camb). 2016 Apr 18;8(4):456-64. doi: 10.1039/c5ib00275c. Epub 2015 Dec 17.
5
Networks of energetic and metabolic interactions define dynamics in microbial communities.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15450-5. doi: 10.1073/pnas.1506034112. Epub 2015 Nov 30.
6
Innovative biological approaches for monitoring and improving water quality.
Front Microbiol. 2015 Aug 12;6:826. doi: 10.3389/fmicb.2015.00826. eCollection 2015.
7
Minimum Information about a Biosynthetic Gene cluster.
Nat Chem Biol. 2015 Sep;11(9):625-31. doi: 10.1038/nchembio.1890.
8
Combinatorial pathway engineering for optimized production of the anti-malarial FR900098.
Biotechnol Bioeng. 2016 Feb;113(2):384-92. doi: 10.1002/bit.25719. Epub 2015 Sep 3.
9
Public attitudes to GM foods. The balancing of risks and gains.
Appetite. 2015 Sep;92:303-13. doi: 10.1016/j.appet.2015.05.031. Epub 2015 May 27.
10
Harnessing CRISPR-Cas systems for bacterial genome editing.
Trends Microbiol. 2015 Apr;23(4):225-32. doi: 10.1016/j.tim.2015.01.008. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验