Suppr超能文献

关于在建筑材料中通过反硝化过程进行微生物碳酸盐沉淀的批判性评价。

A critical review on microbial carbonate precipitation via denitrification process in building materials.

机构信息

Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China.

Department of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

出版信息

Bioengineered. 2021 Dec;12(1):7529-7551. doi: 10.1080/21655979.2021.1979862.

Abstract

The naturally occurring biomineralization or microbially induced calcium carbonate (MICP) precipitation is gaining huge attention due to its widespread application in various fields of engineering. Microbial denitrification is one of the feasible metabolic pathways, in which the denitrifying microbes lead to precipitation of carbonate biomineral by their basic enzymatic and metabolic activities. This review article explains all the metabolic pathways and their mechanism involved in the MICP process in detail along with the benefits of using denitrification over other pathways during MICP implementation. The potential application of denitrification in building materials pertaining to soil reinforcement, bioconcrete, restoration of heritage structures and mitigating the soil pollution has been reviewed by addressing the finding and limitation of MICP treatment. This manuscript further sheds light on the challenges faced during upscaling, real field implementation and the need for future research in this path. The review concludes that although MICP via denitrification is an promising technique to employ it in building materials, a vast interdisciplinary research is still needed for the successful commercialization of this technique.

摘要

由于其在各个工程领域的广泛应用,天然生物矿化或微生物诱导碳酸钙(MICP)沉淀受到了极大的关注。微生物反硝化是可行的代谢途径之一,其中反硝化微生物通过其基本的酶和代谢活性导致碳酸盐生物矿化的沉淀。本文详细阐述了 MICP 过程中涉及的所有代谢途径及其机制,并讨论了在 MICP 实施过程中使用反硝化作用替代其他途径的优势。通过介绍 MICP 处理的发现和局限性,本文还综述了反硝化在建筑材料(如土壤加固、生物混凝土、文物修复和土壤污染治理)方面的潜在应用。本文进一步阐明了在扩大规模、实际现场实施以及该领域未来研究方面面临的挑战。综述得出结论,尽管通过反硝化作用进行 MICP 是一种很有前途的技术,但仍需要进行广泛的跨学科研究,才能使该技术成功商业化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f3/8806777/2eb063ee4e9e/KBIE_A_1979862_F0001_B.jpg

相似文献

1
A critical review on microbial carbonate precipitation via denitrification process in building materials.
Bioengineered. 2021 Dec;12(1):7529-7551. doi: 10.1080/21655979.2021.1979862.
2
Effect of sand minerals on microbially induced carbonate precipitation by denitrification.
Chemosphere. 2024 Sep;363:142890. doi: 10.1016/j.chemosphere.2024.142890. Epub 2024 Jul 16.
3
Calcite seed-assisted microbial induced carbonate precipitation (MICP).
PLoS One. 2021 Feb 9;16(2):e0240763. doi: 10.1371/journal.pone.0240763. eCollection 2021.
4
Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete.
World J Microbiol Biotechnol. 2018 Nov 1;34(11):168. doi: 10.1007/s11274-018-2552-2.
6
Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation.
J Environ Manage. 2024 Jul;363:121410. doi: 10.1016/j.jenvman.2024.121410. Epub 2024 Jun 8.
7
Current challenges and future directions for bacterial self-healing concrete.
Appl Microbiol Biotechnol. 2018 Apr;102(7):3059-3070. doi: 10.1007/s00253-018-8830-y. Epub 2018 Feb 27.
8
Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation.
Sci Total Environ. 2023 Feb 20;860:160439. doi: 10.1016/j.scitotenv.2022.160439. Epub 2022 Nov 26.
9
Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world.
Appl Microbiol Biotechnol. 2019 Jun;103(12):4693-4708. doi: 10.1007/s00253-019-09861-5. Epub 2019 May 11.
10
A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation.
Chemosphere. 2022 Mar;290:133229. doi: 10.1016/j.chemosphere.2021.133229. Epub 2021 Dec 8.

引用本文的文献

1
Characterizing carbonate mineral-forming bacterial strains and their carbonic anhydrase activities in two coastal sabkhas.
Biochem Biophys Rep. 2025 May 27;43:102064. doi: 10.1016/j.bbrep.2025.102064. eCollection 2025 Sep.
3
Dual carbon sequestration with photosynthetic living materials.
Nat Commun. 2025 Apr 23;16(1):3832. doi: 10.1038/s41467-025-58761-y.
4
Mineral Carbonation for Carbon Sequestration: A Case for MCP and MICP.
Int J Mol Sci. 2025 Mar 1;26(5):2230. doi: 10.3390/ijms26052230.
5
Carbonatogenic Bacteria in the Maros-Pangkep Karst: Protectors or Threat to Prehistoric Paintings?
J Microbiol Biotechnol. 2025 Feb 20;35:e2410019. doi: 10.4014/jmb.2410.10019.
6
Biocementation beyond the Petri dish, scaling up to 900 L batches and a meter-scale column.
Sci Rep. 2025 Jan 24;15(1):3030. doi: 10.1038/s41598-025-87074-9.
7
Understanding microbial biomineralization at the molecular level: recent advances.
World J Microbiol Biotechnol. 2024 Sep 16;40(10):320. doi: 10.1007/s11274-024-04132-6.
8
Dual carbon sequestration with photosynthetic living materials.
bioRxiv. 2023 Dec 23:2023.12.22.572991. doi: 10.1101/2023.12.22.572991.
9
Preliminary indication of the role of AHL-dependent quorum sensing systems in calcium carbonate precipitation in Gram-negative bacteria.
AIMS Microbiol. 2023 Sep 26;9(4):692-711. doi: 10.3934/microbiol.2023035. eCollection 2023.
10
Insight into biomolecular interaction-based non-classical crystallization of bacterial biocement.
Appl Microbiol Biotechnol. 2023 Nov;107(21):6683-6701. doi: 10.1007/s00253-023-12736-5. Epub 2023 Sep 5.

本文引用的文献

1
MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review.
Environ Sci Ecotechnol. 2021 May 13;6:100096. doi: 10.1016/j.ese.2021.100096. eCollection 2021 Apr.
2
Potential of a novel facultative anaerobic denitrifying Cupriavidus sp. W12 to remove fluoride and calcium through calcium bioprecipitation.
J Hazard Mater. 2022 Feb 5;423(Pt A):126976. doi: 10.1016/j.jhazmat.2021.126976. Epub 2021 Aug 20.
3
Native Bacterial Community Convergence in Augmented and Stimulated Ureolytic MICP Biocementation.
Environ Sci Technol. 2021 Aug 3;55(15):10784-10793. doi: 10.1021/acs.est.1c01520. Epub 2021 Jul 19.
5
Butterflies fly using efficient propulsive clap mechanism owing to flexible wings.
J R Soc Interface. 2021 Jan;18(174):20200854. doi: 10.1098/rsif.2020.0854. Epub 2021 Jan 20.
6
Multifaceted roles of microalgae in the application of wastewater biotreatment: A review.
Environ Pollut. 2021 Jan 15;269:116236. doi: 10.1016/j.envpol.2020.116236. Epub 2020 Dec 7.
7
Bioleaching: urban mining option to curb the menace of E-waste challenge.
Bioengineered. 2020 Jan 1;11(1):640-660. doi: 10.1080/21655979.2020.1775988.
9
Bioengineering to tackle environmental challenges, climate changes and resource recovery.
Bioengineered. 2019 Dec;10(1):698-699. doi: 10.1080/21655979.2019.1705065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验