Suppr超能文献

EWT-IIT:一种表面肌电图去噪方法。

EWT-IIT: a surface electromyography denoising method.

作者信息

Xiao Feiyun

机构信息

School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China.

Chizhou Huayu Electronic Technology Co., Ltd., Chizhou, 247100, China.

出版信息

Med Biol Eng Comput. 2022 Dec;60(12):3509-3523. doi: 10.1007/s11517-022-02691-0. Epub 2022 Oct 11.

Abstract

Surface electromyography (sEMG) is often interfered by noise, which has a very important impact on the follow-up research based on sEMG signals, such as motion intention recognition, disease diagnosis, and human-computer interaction. In this paper, an sEMG denoising algorithm based on empirical wavelet transform (EWT) and improved interval thresholding (IIT) is proposed to eliminate noise interference of sEMG signals. The proposed method uses EWT to decompose the original sEMG with noise into several empirical intrinsic modal functions (EIMFs) and then applies the IIT function proposed in this paper to conduct threshold processing for each EIMF; this method is called EWT-IIT. Ten healthy subjects participated in the experiment; the corresponding sEMG signals were analyzed. The signal-to-noise ratio (SNR), root mean square error (RMSE), and [Formula: see text] were used to evaluate the effect of denoising. The simulated and experimental results show that the IIT function proposed in this paper combines the advantages of hard threshold function and soft threshold function, and EWT-IIT method can effectively remove the noise with the best denoising effect.

摘要

表面肌电图(sEMG)经常受到噪声干扰,这对基于sEMG信号的后续研究,如运动意图识别、疾病诊断和人机交互等,有着非常重要的影响。本文提出了一种基于经验小波变换(EWT)和改进区间阈值(IIT)的sEMG去噪算法,以消除sEMG信号的噪声干扰。该方法利用EWT将含噪声的原始sEMG分解为若干个经验固有模态函数(EIMF),然后应用本文提出的IIT函数对每个EIMF进行阈值处理;该方法称为EWT-IIT。十名健康受试者参与了实验,并对相应的sEMG信号进行了分析。采用信噪比(SNR)、均方根误差(RMSE)和[公式:见原文]来评估去噪效果。仿真和实验结果表明,本文提出的IIT函数结合了硬阈值函数和软阈值函数的优点,且EWT-IIT方法能够有效去除噪声,具有最佳的去噪效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验