Suppr超能文献

从完全无监督日常活动期间记录的表面肌电信号中去除伪迹。

Artifact removal from sEMG signals recorded during fully unsupervised daily activities.

作者信息

Costa-García Álvaro, Okajima Shotaro, Yang Ningjia, Shimoda Shingo

机构信息

Intelligent Behavior Control Unit, RIKEN Institute, Nagoya, Japan.

出版信息

Digit Health. 2023 Mar 20;9:20552076231164239. doi: 10.1177/20552076231164239. eCollection 2023 Jan-Dec.

Abstract

OBJECTIVE

In this study, we propose a method for removing artifacts from superficial electromyography (sEMG) data, which have been widely proposed for health monitoring because they encompass the basic neuromuscular processes underlying human motion.

METHODS

Our method is based on a spectral source decomposition from single-channel data using a non-negative matrix factorization. The algorithm is validated with two data sets: the first contained muscle activity coupled to artificially generated noises and the second comprised signals recorded under fully unsupervised conditions. Algorithm performance was further assessed by comparison with other state-of-the-art approaches for noise removal using a single channel.

RESULTS

The comparison of methods shows that the proposed algorithm achieves the highest performance on the noise-removal process in terms of signal-to-noise ratio reconstruction, root means square error, and correlation coefficient with the original muscle activity. Moreover, the spectral distribution of the extracted sources shows high correlation with the noise sources traditionally associated to sEMG recordings.

CONCLUSION

This research shows the ability of spectral source separation to detect and remove noise sources coupled to sEMG signals recorded during unsupervised daily activities which opens the door to the implementation of sEMG recording during daily activities for motor and health monitoring.

摘要

目的

在本研究中,我们提出一种从表面肌电图(sEMG)数据中去除伪迹的方法,sEMG数据因包含人类运动背后的基本神经肌肉过程而被广泛用于健康监测。

方法

我们的方法基于使用非负矩阵分解对单通道数据进行频谱源分解。该算法通过两个数据集进行验证:第一个数据集包含与人工生成噪声耦合的肌肉活动,第二个数据集包含在完全无监督条件下记录的信号。通过与其他单通道去噪的先进方法进行比较,进一步评估算法性能。

结果

方法比较表明,所提出的算法在噪声去除过程中,在信噪比重建、均方根误差以及与原始肌肉活动的相关系数方面取得了最高性能。此外,提取源的频谱分布与传统上与sEMG记录相关的噪声源具有高度相关性。

结论

本研究表明频谱源分离能够检测和去除与无监督日常活动期间记录的sEMG信号耦合的噪声源,这为在日常活动期间进行sEMG记录以用于运动和健康监测打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/10028668/172a3fac6b03/10.1177_20552076231164239-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验