School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK.
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
Nat Commun. 2016 May 25;7:11729. doi: 10.1038/ncomms11729.
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
许多系统中的复杂行为源于空间分布粒子或主体的随机相互作用。随机反应扩散过程广泛用于从生物学到社会科学等学科的行为建模,但它们的模拟和校准到观测数据非常困难。在这里,我们使用统计物理学和机器学习的思想为从数据中学习随机反应扩散过程的逆问题提供了一个解决方案。我们的解决方案依赖于随机反应扩散过程和时空 Cox 过程之间的非平凡联系,这是计算统计学中一个研究良好的模型类别。这种联系导致了一种用于参数推断和模型选择的高效灵活的算法。我们的方法在来自系统生物学和流行病学的数值和真实数据示例上表现出了出色的准确性。我们的工作为时空随机系统提供了深入的见解,并为计算建模中的一个长期存在的问题提供了实用的解决方案。