Suppr超能文献

将空间扩散纳入突发随机转录模型。

Incorporating spatial diffusion into models of bursty stochastic transcription.

作者信息

Miles Christopher E

机构信息

Department of Mathematics, Center for Complex Biological Systems, University of California, Irvine, CA, USA.

出版信息

J R Soc Interface. 2025 Apr;22(225):20240739. doi: 10.1098/rsif.2024.0739. Epub 2025 Apr 9.

Abstract

The dynamics of gene expression are stochastic and spatial at the molecular scale, with messenger RNA (mRNA) transcribed at specific nuclear locations and then transported to the nuclear boundary for export. Consequently, the spatial distributions of these molecules encode their underlying dynamics. While mechanistic models for molecular counts have revealed numerous insights into gene expression, they have largely neglected now-available subcellular spatial resolution down to individual molecules. Owing to the technical challenges inherent in spatial stochastic processes, tools for studying these subcellular spatial patterns are still limited. Here, we introduce a spatial stochastic model of nuclear mRNA with two-state (telegraph) transcriptional dynamics. Observations of the model can be concisely described as following a spatial Cox process driven by a stochastically switching partial differential equation. We derive analytical solutions for spatial and demographic moments and validate them with simulations. We show that the distribution of mRNA counts can be accurately approximated by a Poisson-beta distribution with tractable parameters, even with complex spatial dynamics. This observation allows for efficient parameter inference demonstrated on synthetic data. Altogether, our work adds progress towards a new frontier of subcellular spatial resolution in inferring the dynamics of gene expression from static snapshot data.

摘要

在分子尺度上,基因表达的动态是随机且具有空间特性的,信使核糖核酸(mRNA)在特定的细胞核位置转录,然后被运输到核边界以便输出。因此,这些分子的空间分布编码了其潜在的动态。虽然针对分子数量的机制模型已经揭示了许多关于基因表达的见解,但它们在很大程度上忽略了目前可获得的直至单个分子的亚细胞空间分辨率。由于空间随机过程中固有的技术挑战,用于研究这些亚细胞空间模式的工具仍然有限。在这里,我们引入了一个具有双态(电报式)转录动态的细胞核mRNA空间随机模型。该模型的观测结果可以简洁地描述为遵循由一个随机切换的偏微分方程驱动的空间考克斯过程。我们推导出了空间和数量矩的解析解,并用模拟对其进行了验证。我们表明,即使具有复杂的空间动态,mRNA数量的分布也可以由具有易于处理参数的泊松 - 贝塔分布准确近似。这一观测结果使得在合成数据上展示高效的参数推断成为可能。总的来说,我们的工作朝着从静态快照数据推断基因表达动态的亚细胞空间分辨率这一新前沿迈进了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f0/11978452/7d5bab86575a/rsif.2024.0739.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验