Huynh-Thu Vân Anh, Sanguinetti Guido
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, and SynthSys - Systems and Synthetic Biology, University of Edinburgh, Edinburgh EH9 3JD, UK.
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, and SynthSys - Systems and Synthetic Biology, University of Edinburgh, Edinburgh EH9 3JD, UK School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, and SynthSys - Systems and Synthetic Biology, University of Edinburgh, Edinburgh EH9 3JD, UK.
Bioinformatics. 2015 May 15;31(10):1614-22. doi: 10.1093/bioinformatics/btu863. Epub 2015 Jan 7.
Reconstructing the topology of gene regulatory networks (GRNs) from time series of gene expression data remains an important open problem in computational systems biology. Existing GRN inference algorithms face one of two limitations: model-free methods are scalable but suffer from a lack of interpretability and cannot in general be used for out of sample predictions. On the other hand, model-based methods focus on identifying a dynamical model of the system. These are clearly interpretable and can be used for predictions; however, they rely on strong assumptions and are typically very demanding computationally.
Here, we propose a new hybrid approach for GRN inference, called Jump3, exploiting time series of expression data. Jump3 is based on a formal on/off model of gene expression but uses a non-parametric procedure based on decision trees (called 'jump trees') to reconstruct the GRN topology, allowing the inference of networks of hundreds of genes. We show the good performance of Jump3 on in silico and synthetic networks and applied the approach to identify regulatory interactions activated in the presence of interferon gamma.
从基因表达数据的时间序列重建基因调控网络(GRN)的拓扑结构仍然是计算系统生物学中一个重要的开放性问题。现有的GRN推理算法面临以下两种限制之一:无模型方法具有可扩展性,但缺乏可解释性,并且一般不能用于样本外预测。另一方面,基于模型的方法侧重于识别系统的动力学模型。这些方法具有明显的可解释性,并且可用于预测;然而,它们依赖于强假设,并且计算上通常要求很高。
在此,我们提出了一种用于GRN推理的新的混合方法,称为Jump3,它利用表达数据的时间序列。Jump3基于基因表达的形式化开/关模型,但使用基于决策树(称为“跳跃树”)的非参数过程来重建GRN拓扑结构,从而能够推断包含数百个基因的网络。我们展示了Jump3在计算机模拟网络和合成网络上的良好性能,并应用该方法识别在存在干扰素γ的情况下激活的调控相互作用。