Suppr超能文献

原始酶中的气体通道重排:来自自养乙醇梭菌的一氧化碳脱氢酶/乙酰辅酶A合酶复合物的结构见解

Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum.

作者信息

Lemaire Olivier N, Wagner Tristan

机构信息

Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.

Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.

出版信息

Biochim Biophys Acta Bioenerg. 2021 Jan 1;1862(1):148330. doi: 10.1016/j.bbabio.2020.148330. Epub 2020 Oct 17.

Abstract

Clostridium autoethanogenum, the bacterial model for biological conversion of waste gases into biofuels, grows under extreme carbon-monoxide (CO) concentrations. The strictly anaerobic bacterium derives its entire cellular energy and carbon from this poisonous gas, therefore requiring efficient molecular machineries for CO-conversion. Here, we structurally and biochemically characterized the key enzyme of the CO-converting metabolism: the CO-dehydrogenase/Acetyl-CoA synthase (CODH/ACS). We obtained crystal structures of natively isolated complexes from fructose-grown and CO-grown C. autoethanogenum cultures. Both contain the same isoforms and if the overall structure adopts the classic αβ architecture, comparable to the model enzyme from Moorella thermoacetica, the ACS binds a different position on the CODH core. The structural characterization of a proteolyzed complex and the conservation of the binding interface in close homologs rejected the possibility of a crystallization artefact. Therefore, the internal CO-channeling system, critical to transfer CO generated at the C-cluster to the ACS active site, drastically differs in the complex from C. autoethanogenum. The 1.9-Å structure of the CODH alone provides an accurate picture of the new CO-routes, leading to the ACS core and reaching the surface. Increased gas accessibility would allow the simultaneous CO-oxidation and acetyl-CoA production. Biochemical experiments showed higher flexibility of the ACS subunit from C. autoethanogenum compared to M. thermoacetica, albeit monitoring similar CO-oxidation and formation rates. These results show a reshuffling of internal CO-tunnels during evolution of these Firmicutes, putatively leading to a bidirectional complex that ensure a high flux of CO-conversion toward energy conservation, acting as the main cellular powerplant.

摘要

自养乙醇梭菌是将废气生物转化为生物燃料的细菌模型,能在极端一氧化碳(CO)浓度下生长。这种严格厌氧的细菌从这种有毒气体中获取全部细胞能量和碳源,因此需要高效的分子机制来进行CO转化。在此,我们对CO转化代谢的关键酶:CO脱氢酶/乙酰辅酶A合成酶(CODH/ACS)进行了结构和生化特性研究。我们获得了从果糖培养和CO培养的自养乙醇梭菌培养物中天然分离的复合物的晶体结构。两者都包含相同的异构体,并且如果整体结构采用经典的αβ结构,与嗜热栖热菌的模型酶类似,那么ACS在CODH核心上的结合位置不同。对一种蛋白酶解复合物的结构表征以及紧密同源物中结合界面的保守性排除了结晶假象的可能性。因此,对于将在C簇产生的CO转移到ACS活性位点至关重要的内部CO通道系统,在自养乙醇梭菌的复合物中存在显著差异。单独的CODH的1.9埃结构提供了通向ACS核心并到达表面的新CO途径的精确图像。增加的气体可及性将允许同时进行CO氧化和乙酰辅酶A的产生。生化实验表明,与嗜热栖热菌相比,自养乙醇梭菌的ACS亚基具有更高的灵活性,尽管监测到的CO氧化和形成速率相似。这些结果表明,在这些厚壁菌的进化过程中,内部CO隧道发生了重新排列,推测导致了一种双向复合物,该复合物确保了向能量守恒的高CO转化通量,充当主要的细胞动力工厂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验