Suppr超能文献

大肠杆菌及相关物种中的VI型分泌系统。

The Type VI Secretion System in Escherichia coli and Related Species.

作者信息

Journet Laure, Cascales Eric

机构信息

Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France.

出版信息

EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0009-2015.

Abstract

The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.

摘要

VI型分泌系统(T6SS)是一种多蛋白复合体,广泛存在于变形菌门中,负责将毒素传递到原核细胞和真核细胞中。因此,它参与细菌间的竞争以及致病过程。T6SS是一种收缩性武器,与收缩尾噬菌体的注射装置相关。基本上,它组装了一个被鞘状结构包裹的内管,并通过膜复合体锚定在细胞膜上。鞘收缩释放的能量推动内管穿过膜通道并朝向靶细胞。尽管其组装和作用机制在不同物种间是保守的,但分泌毒素的种类以及调控机制和靶细胞的多样性使T6SS成为一种高度通用的分泌系统。T6SS在大肠杆菌致病型和沙门氏菌血清型中尤为常见。在本综述中,我们总结了目前关于T6SS在大肠杆菌、沙门氏菌及相关物种中的普遍性、组装、调控和作用的知识。

相似文献

1
The Type VI Secretion System in Escherichia coli and Related Species.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0009-2015.
3
Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.
J Bacteriol. 2019 May 22;201(12). doi: 10.1128/JB.00173-19. Print 2019 Jun 15.
5
TssA: The cap protein of the Type VI secretion system tail.
Bioessays. 2017 Oct;39(10). doi: 10.1002/bies.201600262. Epub 2017 Aug 17.
6
Structure and Activity of the Type VI Secretion System.
Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.PSIB-0031-2019.
7
Biogenesis and structure of a type VI secretion baseplate.
Nat Microbiol. 2018 Dec;3(12):1404-1416. doi: 10.1038/s41564-018-0260-1. Epub 2018 Oct 15.
10
The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery.
mBio. 2021 Jun 29;12(3):e0026221. doi: 10.1128/mBio.00262-21. Epub 2021 Jun 1.

引用本文的文献

2
An interbacterial cysteine protease toxin inhibits cell growth by targeting type II DNA topoisomerases GyrB and ParE.
PLoS Biol. 2025 May 27;23(5):e3003208. doi: 10.1371/journal.pbio.3003208. eCollection 2025 May.
3
Comparative analysis of virulence-associated genes in ESBL-producing isolates from bloodstream and urinary tract infections.
Front Microbiol. 2025 Apr 24;16:1571121. doi: 10.3389/fmicb.2025.1571121. eCollection 2025.
4
A novel chaperone-effector-immunity system identified in uropathogenic UMN026.
PeerJ. 2024 May 20;12:e17336. doi: 10.7717/peerj.17336. eCollection 2024.
5
utilises colicins during inter-bacterial competition.
Microbiology (Reading). 2024 Feb;170(2). doi: 10.1099/mic.0.001434.
6
Colicins and T6SS-based competition systems enhance enterotoxigenic (ETEC) competitiveness.
Gut Microbes. 2024 Jan-Dec;16(1):2295891. doi: 10.1080/19490976.2023.2295891. Epub 2023 Dec 27.
7
Parallel loss of type VI secretion systems in two multi-drug-resistant lineages.
Microb Genom. 2023 Nov;9(11). doi: 10.1099/mgen.0.001133.
8
A Mini-Review of Enteroaggregative with a Specific Target on the Virulence Factors Controlled by the AggR Master Regulator.
Pol J Microbiol. 2023 Dec 16;72(4):347-354. doi: 10.33073/pjm-2023-037. eCollection 2023 Dec 1.
9
Pathogenicity assessment of Shiga toxin-producing strains isolated from wild birds in a major agricultural region in California.
Front Microbiol. 2023 Sep 26;14:1214081. doi: 10.3389/fmicb.2023.1214081. eCollection 2023.
10
Morphological and genomic characteristics of two novel actinomycetes, sp. nov. and sp. nov. isolated from bat faeces ( and ).
Front Cell Infect Microbiol. 2023 Feb 14;13:1093407. doi: 10.3389/fcimb.2023.1093407. eCollection 2023.

本文引用的文献

3
An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells.
Cell. 2015 Oct 22;163(3):607-19. doi: 10.1016/j.cell.2015.09.027. Epub 2015 Oct 8.
4
Molecular weaponry: diverse effectors delivered by the Type VI secretion system.
Cell Microbiol. 2015 Dec;17(12):1742-51. doi: 10.1111/cmi.12532. Epub 2015 Nov 3.
5
Type VI secretion system: secretion by a contractile nanomachine.
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0021.
6
Biogenesis and structure of a type VI secretion membrane core complex.
Nature. 2015 Jul 30;523(7562):555-60. doi: 10.1038/nature14667. Epub 2015 Jul 22.
7
Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.
EMBO J. 2015 Aug 13;34(16):2198-210. doi: 10.15252/embj.201591163. Epub 2015 Jul 19.
8
Identification of divergent type VI secretion effectors using a conserved chaperone domain.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9106-11. doi: 10.1073/pnas.1505317112. Epub 2015 Jul 6.
9
Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae.
Front Cell Infect Microbiol. 2015 May 27;5:47. doi: 10.3389/fcimb.2015.00047. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验